
A mixed-field formulation for 
modeling dielectric ring resonators 
and its application in optical 
frequency comb generation
Ergun Simsek, Alioune Niang, Raonaqul Islam, Logan Courtright, Pradyoth Shandilya, 
Gary M. Carter & Curtis R. Menyuk

We present a novel finite-difference frequency-domain formulation for accurate and efficient modal 
analysis of dielectric ring resonators, a critical component in microresonator-based optical frequency 
comb (OFC) generation. Unlike previous methods, our approach solves for both electric and magnetic 
fields simultaneously in cylindrical coordinates, eliminating spurious modes and ensuring high fidelity 
at material boundaries. The solver enables rapid computation of resonant modes without requiring 
manual input for azimuthal mode numbers, significantly streamlining dispersion engineering for OFC 
design. We validate our method against experimental data and the results generated with commercial 
solvers, demonstrating excellent agreement in effective indices, integrated dispersion, and resonance 
linewidths for silicon nitride resonators excited with lasers operating at 1060 nm and 1550 nm. Our 
results highlight the solver’s utility in predicting anomalous dispersion and coupling dynamics, offering 
a robust tool for designing high-performance OFC devices.

Optical frequency combs (OFCs) are powerful tools that provide a set of discrete, equally spaced spectral 
lines, with the potential to revolutionize various fields such as precision spectroscopy1–4, optical metrology2,5,6, 
telecommunications2, and quantum information processing3,7. The ability to generate and control OFCs with 
high stability and broad bandwidth has enabled the realization of optical clocks5, frequency synthesis1, and 
high-capacity data transmission systems2. Among various platforms for OFC generation, microresonator-based 
frequency combs–also known as Kerr combs, as illustrated in Fig. 1–have attracted significant attention due to 
their compact size, high Q-factors, and compatibility with photonic integration2,6,8–10.

Designing resonator geometries that support broadband and low-noise frequency combs requires precise 
dispersion engineering, which in turn depends on accurate and efficient numerical simulation tools. Several 
numerical methods are available to model electromagnetic wave propagation in dielectric resonators, including 
time-domain techniques such as the finite-difference time-domain (FDTD) method11,12, and frequency-domain 
methods such as the finite element method (FEM)13–16, mode matching17, and the finite-difference frequency-
domain (FDFD) method18–24. Among these, FDTD is a general-purpose solver capable of modeling complex 
time-domain phenomena, including nonlinear frequency comb dynamics. However, for large-scale or high-Q 
resonators, its computational cost becomes prohibitive due to the need for fine spatial and temporal resolution 
over long simulation windows. This is why the most common method for analyzing optical frequency comb 
generation is typically handled in two steps. First, modal analysis is performed using numerical solvers such as 
the finite element method (FEM) or finite differences frequency domain (FDFD) method. These solvers are used 
to compute the electromagnetic field profiles and the corresponding effective refractive indices of the confined or 
resonant modes in both the bus waveguide25 and the dielectric resonator. High accuracy in this step is crucial, as 
even slight errors in field profiles or indices can result in significant deviations in predicted resonant behavior and 
coupling dynamics. Second, the interaction between the waveguide and the resonator is analyzed using coupled 
mode theory (CMT), which enables an approximate yet powerful framework for evaluating coupling efficiency 
between the structures9,26,27. From the computed effective indices, we can derive important dispersion-related 
quantities such as the group index and integrated dispersion, which are essential for understanding the phase-
matching conditions and the bandwidth over which efficient comb generation can occur6,8,9. Once the linear 
modal and coupling characteristics are understood, non-linear dynamics, particularly those that govern soliton 
formation and frequency comb evolution, are modeled by solving the Lugiato-Lefever equation (LLE)10,28–32. 
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This equation incorporates both Kerr nonlinearity and dispersion, and its solution provides insight into the 
steady-state and transient behaviors of the system under realistic operating conditions.

Frequency-domain methods offer an attractive alternative for the linear modal analysis stage of design. 
Among the frequency-domain methods, FEM provides geometric flexibility for modeling irregular or curved 
waveguide cross-sections, though it requires sophisticated meshing and high-order basis functions. Mode 
matching divides the waveguide into subregions with known analytical modal solutions and enforces continuity 
at interfaces. While this approach avoids numerical dispersion errors, it often requires a large number of modes 
to converge in high-index-contrast structures. The FDFD method offers a favorable tradeoff between simplicity 
and accuracy. It uses structured grids to discretize Maxwell’s equations directly, making it especially well-suited 
for exploratory design and research applications. Existing FDFD methods for axially symmetric structures 
typically operate either in cylindrical coordinates19 or transformed Cartesian grids18,20–24,33. They usually solve 
for two transverse components of either the electric field (E)19,22 or magnetic field (H)21,23,24, with the remaining 
components inferred numerically. However, because resonant modes in dielectric rings are hybrid–lacking pure 
transverse-electric (TE) or transverse-magnetic (TM) character–field-only formulations may produce spurious 
modes. Solving for both E and H concurrently improves reliability by avoiding these artifacts.

In this work, we present a new formulation for electromagnetic wave propagation in dielectric rings and 
implement it in MATLAB using a finite-differences approach. Our solver enables rapid and accurate modal 
analysis in ring geometries, making it well-suited for exploring the dispersion characteristics essential for 
designing structures for optical frequency comb generation. As a first application, we investigated a dielectric 
ring resonator exhibiting anomalous dispersion near 1060 nm and successfully verified our numerical results 
against experimental data reported in a recent publication6. Subsequently, we applied our solver to study 
frequency comb generation near 1550 nm. The numerically obtained free spectral range (FSR) and full-width at 
half-maximum (FWHM) values show strong agreement with our experimental measurements, confirming the 
accuracy and utility of our method for frequency comb-related applications.

The importance of this work can be summarized as follows.

•	 Unlike some previous studies19, our formulation accounts for the non-zero divergence of the electric field at 
material boundaries, ensuring more accurate field solutions.

•	 Unlike some earlier work21,23,24, we derive the formulation in cylindrical coordinates; hence, we do not use the 
coordinate transformation approximation.

•	 Unlike it is done in earlier studies33, our method does not neglect the field components in the direction of 
propagation, enabling a complete description of hybrid modes in dielectric resonators.

•	 Our solver concurrently computes the E and H fields, eliminating spurious modes and improving reliability.
•	 We rigorously benchmarked our numerical results against experimental data and the ones obtained with 

commercial solvers, COMSOL Multiphysics and Tidy3D.

Results
Figure 2 illustrates a dielectric ring with a central radius of Rc, width of wr , and height of hr . The background 
does not have to be a homogeneous medium. The ring can be placed on a substrate, for example, as illustrated in 
Fig. 2. The only requirement regarding the background is that it has to have cylindrical symmetry with respect 
to the z-axis. So, the relative permittivity (ε) is a function of ρ and z. We assume the entire structure is non-
magnetic, i.e., µ(ρ, z) = µ0, where µ0 is the magnetic permeability of free space.

We discretize the computational domain along a rectangular grid by selecting Nρ uniformly distributed 
samples along the ρ-direction and Nz  uniformly distributed samples along the z-direction as shown in Fig. 
2b. We compute the first- and second-order derivatives using central finite differences25. We place a perfectly 
matched layer around the boundary following the recipe developed by Berenger34. As explained on page 36 of 
Kogelnik’s pioneering work35, the fields outside the dielectric waveguides decay exponentially for the guided 
modes. Hence, placing the ring at the center of a computational domain that is (wr + λ) × (hr + λ), where wr  
and hr  are the ring width and height, is sufficient to obtain accurate results to determine the resonant modes 
of a ring surrounded by a homogeneous background. However, if a thin film and/or substrate are present, the 
computational domain should be enlarged to adequately capture their effect on wave propagation.

Fig. 1.  Schematic illustration of optical frequency comb generation via bus waveguide coupled to a dielectric 
ring resonator. A continuous-wave (single-frequency) laser is launched into a bus waveguide (left), which is 
side-coupled to a dielectric ring resonator. Nonlinear interactions within the resonator lead to the generation 
of equidistant spectral lines, forming a frequency comb.
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Integrated dispersion study
For the first example, we carry out modal analysis on the dielectric ring studied in a recent study6. The ring’s outer 
radius, width, and height are 23 µm, 890 nm, and 670 nm, respectively. The ring is made from silicon nitride4 
(Si3N4) and surrounded by silicon dioxide36 (SiO2). For the numerical solution, we use a 430 × 320 grid which 
covers 5wr  by 5hr  region on the ρ − z plane with a 100-point-per-wavelength (ppw) sampling density.

The first three columns of Fig. 3 show the magnitude of the electric (first row) and magnetic (second row) 
fields’ ρ, ϕ, and z components on the ρ − z plane for the first resonant mode obtained with our solver. In the last 
column, we provide field profile examples (|Ez| and |Hz|) obtained with COMSOL. These solutions demonstrate 
a close agreement, with only minor deviations within acceptable numerical tolerance levels. We observe that the 
electric field is well-confined within the high-index Si3N4 region, with some fields extending slightly outside the 
boundaries due to the evanescent field. The symmetry of the fields is consistent with the fundamental resonant 
mode, where fields are strongly coupled to the geometry of the ring.

The results presented in Table 1 demonstrate a very good agreement between our solver and two widely used 
commercial solvers–COMSOL Multiphysics and Tidy3D–for the effective refractive indices of the first eight 
resonant modes. For both commercial solvers, a sampling density of 100 ppw is used. The computation domain 
(without the perfectly matched layers) is 5wr  by 5hr . For all modes, the effective index computed by our method 
closely matches those obtained from COMSOL and Tidy3D, with discrepancies typically on the order of 10−3 
or less.

Fig. 3.  Left three columns: magnitude of the electric (top row) and magnetic (bottom row) fields’ ρ, ϕ, and 
z components for the first resonant mode of the electromagnetic waves computed with our solver. The last 
column shows |Ez| and |Hz| distributions obtained with COMSOL. The white dashed lines outline the 
boundaries of the ring, giving insight into how the electromagnetic fields are confined but not completely 
symmetric.

 

Fig. 2.  A dielectric ring with a width of wr , a height of hr , and a central radius of Rc on a substrate: (a) 
three-dimensional and (b) two-dimensional views. Ri and Ro are the inner and outer radii of the ring, i.e., 
Ri = Rc − wr/2 = Ro − wr . By assuming the material properties are uniform axially around the z-axis, 
the problem can be solved in two dimensions using differential vector operators in the cylindrical coordinate 
system.
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Figure 4 presents a comprehensive comparison of three electromagnetic solvers–COMSOL, Tidy3D, and the 
finite-difference frequency-domain (FDFD) solver developed in this work–evaluated in terms of effective index 
convergence (for the first fundamental mode), relative error, compute time, and approximate memory usage, all 
as functions of mesh sampling density, expressed in ppw.

In Fig.  4a, the convergence of the effective index is shown as a function of mesh density. COMSOL 
exhibits a stable and nearly flat convergence profile, approaching a value of 1.86881. Tidy3D shows monotonic 
convergence from above, while our FDFD solver converges from below. Around 100 points per wavelength 
(ppw), all three solvers converge to the same effective index, establishing consistency and validating the accuracy 
of the numerical approaches. Figure 4b presents the relative error in the effective index, plotted on a logarithmic 
scale. The reference solution is the COMSOL result obtained with the highest mesh density of 100 ppw, which 
is taken as the ground truth. COMSOL achieves the lowest relative error, dropping below 10−6% as the mesh 
is refined. Tidy3D and our FDFD solver exhibit higher initial error levels, ranging from approximately 0.1% 
to 0.01%, but both show consistent improvement with mesh refinement. While Tidy3D performs slightly 
better at intermediate densities, our FDFD solver matches or surpasses its accuracy at higher mesh densities, 
achieving an error of less than 0.01% near 60 ppw. The observed slopes of the error curves indicate second-order 
convergence, consistent with the use of quadratic basis functions. Figure 4c compares the computation time per 
mode. COMSOL shows a steep increase in computation time with mesh refinement, exceeding several hundred 
seconds at the highest densities. In contrast, both Tidy3D and our FDFD solver are significantly faster, remaining 
below 100 seconds across all mesh densities. Two primary factors explain this differece: (i) the FEM solves for 
a single mode at a time, whereas FDFD solvers can compute multiple resonant modes simultaneously, and (ii) 
FEM relies on an unstructured mesh, which requires more time to assemble the system matrices compared to 

Fig. 4.  Effective index of the first fundamental mode, relative error, compute time, and approximate memory 
usage of COMSOL Multiphysics (blue), Tidy3D (red), and our solver (yellow) as a function of mesh sampling 
density.

 

mode index neff  (COMSOL) neff  (Tidy3D) neff  (This work)

1 1.86881 1.86963 1.86854

2 1.85677 1.85748 1.85649

3 1.68341 1.68470 1.68332

4 1.66419 1.66551 1.66396

5 1.60776 1.60806 1.60755

6 1.55427 1.55503 1.55422

7 1.52296 1.52364 1.52292

8 1.49083 1.49179 1.49068

Table 1.  Effective refractive indices of the first four resonant modes of a Si3N4 ring buried in SiO2, computed 
with COMSOL, Tidy3D, and our solver.
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the uniform grid used in FDFD solvers. The latter enables faster matrix assembly and simpler memory access 
patterns. Our FDFD solver performs on par with, and occasionally better than, Tidy3D in the low to mid-range 
of mesh densities, demonstrating its efficiency and suitability for fast simulations. Approximate memory usage 
is plotted in Fig. 4d as a function of mesh density. All solvers exhibit near power-law scaling. COMSOL, despite 
employing an iterative solver, consumes the most memory, followed by our FDFD solver, which uses slightly 
more memory than Tidy3D. This is likely due to the simultaneous solution of both electric and magnetic field 
components in our implementation. FEM’s high memory consumption stems from several factors: it requires 
storing and operating on sparse matrices corresponding to unstructured meshes, and these matrices tend to 
have a higher number of non-zero entries per row due to the use of high-order basis functions and irregular 
element connectivity. Additionally, the FEM formulation may involve more complex data structures to manage 
element connectivity, boundary conditions, and shape functions, which further contribute to increased memory 
demands.

To emphasize the main benefit of FDFD solvers compared to the FDTD solvers, let us provide another figure 
as follows. In conventional electromagnetic solvers such as ANSYS Lumerical and COMSOL Multiphysics, 
modal analysis of dielectric ring resonators requires an initial guess for the effective index (in ANSYS Lumerical) 
or azimuthal mode number (in COMSOL Multiphysics), which is approximately given by βRc, where β is the 
unknown propagation constant. After finding one mode, users iteratively try neighboring integers to locate 
additional resonant modes. This trial-and-error process can be cumbersome and time-consuming. In contrast, 
our mathematical formulation eliminates the need for such manual input. By specifying only the number of 
desired modes, our solver automatically computes the corresponding field distributions and effective indices. 
As illustrated in Fig. 5, we efficiently obtained the effective indices of the first 40 modes in just four minutes on 
a standard 2021 Apple MacBook Pro with 32 GB of RAM, averaging 6 seconds per mode. This performance is 
comparable to COMSOL’s computation time using a high-quality mesh of 30 points per wavelength, but without 
the burden of manual parameter tuning, providing a more streamlined and scalable approach to dielectric ring 
resonator analysis.

To characterize the dispersive properties of the dielectric ring resonator, we first compute the frequency-
dependent effective refractive index, neff, using the proposed numerical formulation. The calculations are 
performed at 100 evenly spaced frequency points ranging from 200 THz to 350 THz. The resulting effective 
index profile is shown in Fig. 6a. From the effective index data, we derive the group index using the relation 
ng = neff − λ dneff/dλ, where λ is the corresponding wavelength. The computed group index is presented 
in Fig. 6b. Next, we calculate the integrated dispersion, defined as the deviation of the resonant frequencies 

Fig. 6.  (a) Effective refractive index neff as a function of frequency, computed using our numerical 
formulation. (b) Corresponding group index ng derived from the wavelength dependence of neff. (c) 
Integrated dispersion Dint/2π in GHz compared with experimental measurements6. The pump frequency is 
283 THz (1060 nm).

 

Fig. 5.  The effective index of the first 40 modes computed with our solver.
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from a perfectly equidistant grid: Dint(µ) = ωµ − (ω0 + D1µ), where ωµ denotes the angular frequency of 
the µth resonant mode, ω0 is the pump frequency (set to 283  THz, corresponding to 1060  nm), and D1 is 
the free spectral range (FSR) at the pump frequency in rad/s. By fitting the calculated values of Dint(µ) to a 
polynomial expansion, we extract the second-order dispersion parameter D2, whose positive sign indicates 
the anomalous dispersion regime–a necessary condition for soliton formation in microresonator-based optical 
frequency combs. The computed integrated dispersion is shown in Fig. 6c. Our numerical results (blue curve) 
exhibit a good agreement with the experimental data6, which are overlaid as red circular markers.

Figure 7 shows the integrated dispersion curves as a function of mode number for the fundamental modes 
2–5. Only for mode 2, Fig. 7a, the curve exhibits a pronounced parabolic shape with a positive curvature near 
the pump, corresponding to a small but positive D2. This indicates anomalous dispersion and is favorable for 
soliton formation. For mode  3, Fig.  7b, Dint rapidly flattens and approaches zero at higher mode numbers, 
corresponding to a very weakly anomalous dispersion regime, where comb formation may still occur but with 
reduced bandwidth due to limited phase matching. The remaining two curves display negative curvature, 
corresponding to D2 < 0 (normal dispersion). In these cases, bright soliton formation is not possible, although 
other nonlinear states such as dark solitons or modulation instability may arise. The increasingly negative slope 
at higher mode numbers further restricts the accessible comb bandwidth for these modes.

Frequency comb generation study
We investigate the frequency comb generation both experimentally and numerically, utilizing a high-Q 
microresonator based on a silicon nitride (Si3N4) ring, again surrounded with SiO2. The experimental setup 
used to obtain these measurements is described in detail in the Methods section below. The central radius of the 
ring resonator is Rc = 225 µm, with a ring width of wr = 1.55 µm and a height of hr = 0.8 µm. The straight 
bus waveguide, which couples light into the resonator, is not tapered and runs parallel to the tangential direction 
of the circular ring resonator, as illustrated in Fig. 1. The bus waveguide has identical cross-sectional dimensions 
(1.55 µm × 0.8 µm). The gap between the waveguide and ring is g = 0.5 µm. The excitation wavelength is 1.55 
µm.

We first generate numerical results using a high-resolution mesh with 100 points per wavelength (ppw) 
sampling density. For λ = 1550 nm, the computed effective index is 1.8436. Given that the ring radius 
is significantly larger than the wavelength, the effective index of the first resonant mode is calculated to be 
1.8448, which is very close to the effective index of the waveguide. The corresponding group index is found 
to be 2.1292, leading to an estimated free spectral range (FSR) of approximately 99.6 GHz, using the relation 
FSRapprox ≈ c0/2πngRc.

Next, we compute the effective index across the wavelength range 1500 nm ≤ λ ≤ 1560 nm using three 
different discretizations: 20 ppw, 40 ppw, and 100 ppw. From these values, the integrated dispersion (Dint) is 
calculated. In Fig. 8, we present these numerical results (solid blue, dashed red, and dash-dotted yellow curves, 
respectively) alongside experimentally measured values (purple circles). As expected, the simulation with 100 
ppw shows excellent agreement with experimental data throughout the spectrum. Reduced mesh quality leads 
to increasing discrepancies, particularly at wavelengths further from the pump wavelength, underscoring the 
importance of sufficient numerical resolution for accurate modeling.

Figure 9a shows the transmission spectrum obtained with the numerical solution of the power transmission 
formula26 assuming a propagation loss of α = 0.06 dB/cm37 to account for material absorption, scattering, and 
radiation losses. The spectral difference between the two dips, in other words, the FSR, is determined to be 99.6 
GHz, which agrees with the approximate number aforementioned before.

Fig. 7.  (a)–(d) Integrated dispersion curves for the fundamental modes 2–5.
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Figure 9b presents a detailed view of the resonance observed in both our numerical simulations and 
experimental measurements. To validate these simulations experimentally, we employed a setup with a primary 
pump laser operating with low power at 1550.183 nm to characterize the resonator’s linewidth. However, to 
facilitate a direct comparison between numerical and experimental results, we aligned the frequency axis such 
that the strongest dip in the numerical transmission spectrum, located at 1549.5 nm, coincides with the center of 
the experimental data. Both results exhibit a Lorentzian shape with a linewidth (full width at half maximum) of 
120 MHz. This narrow linewidth corresponds to a high quality factor (Q-factor = pump frequency/∆FWHM) of 
1.6 million, indicating a highly confined resonance. It is important to note that this Q-factor represents the total 
or loaded quality factor, defined as 1/Q = 1/Qc + 1/Qi, and is distinct from the coupling quality factor (Qc) 
and the intrinsic resonance quality (Qi) of the ring. The average coupling quality factor, which characterizes the 
energy transfer efficiency between the waveguide and the ring, was numerically determined to be 2.2 million.

Figure 10 presents a comparative analysis of the calculated (red sticks) and experimentally measured (blue 
curve) power spectra, showcasing the generation of an optical frequency comb using a bus waveguide coupled 
to a ring resonator.

In experiment, the primary pump laser operates at approximately 1550 nm and is tuned across the cavity 
resonance from the blue-detuned side to the red-detuned side to access the soliton or frequency-comb state. As 
the pump approaches the center of the resonance, coupling efficiency increases, leading to higher intracavity 
power and a transition to a chaotic regime. This elevated intracavity power induces thermal effects that shift the 
cavity resonance. Upon the formation of a soliton state, the intracavity energy undergoes an abrupt reduction, 
resulting in a rapid cooling of the resonator. Consequently, the cavity resonances “snap back” toward their 
original positions. Since the relative detuning between the pump and the nearest resonance is altered from 
the detuning value at which the soliton was first initiated, the soliton state often becomes unstable and is lost. 
To mitigate this instability, an auxiliary laser was introduced38. The auxiliary laser is positioned with a blue 

Fig. 9.  (a) Normalized transmission vs. excitation frequency obtained with the numerical solution. (b) A 
comparison of experimental (blue) and calculated (red) transmission spectra near the resonance.

 

Fig. 8.  Integrated dispersion (Dint) of a Si3N4 ring resonator (Rc = 225 µm, wr = 1.55 µm, and 
hr = 0.8 µm) embedded in SiO2. Numerical solutions obtained using three different mesh densities are 
compared against experimental results.
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detuning relative to a nearby resonance, in this case at 1543.71 nm, thereby providing controlled cavity heating. 
As the primary pump is scanned from the blue-detuned to the red-detuned side of its resonance, the resulting 
heating also red-shifts the resonance near the auxiliary laser wavelength. This shift decreases the coupling 
efficiency of the auxiliary laser into the cavity, thereby reducing its heating contribution. The net effect is a 
stabilization of the cavity temperature, which suppresses thermo-optic drift of the resonances, including the 
primary pump resonance, and enhances the stability of the soliton state. The experimental result shown in Fig. 
10 was obtained by pumping the bus waveguide with 300 mW at 1550.183 nm while simultaneously applying an 
auxiliary laser at 1543.71 nm with 263 mW. For the LLE solution, we assume δ0 = 3.2, F = 2.2, D2 = −0.01, 
and γ = 0.8 (for details, please see “Supplementary Information”). Both the simulation and experimental data 
confirm the formation of a frequency comb with an FSR of 99.6 GHz, demonstrating excellent agreement in this 
fundamental characteristic.

The calculated spectrum (red sticks) displays a highly regular and idealized comb structure characterized by 
sharp spectral lines with a hyperbolic-secant shape spanning a wide bandwidth. This spectrum represents the 
intrinsic behavior of the system as predicted by the LLE under ideal conditions. In contrast, the experimentally 
obtained spectrum (blue curve) exhibits deviations from this ideal scenario. Notably, the noise floor is 
significantly higher in the experimental data, reflecting noise sources not captured in the simulations. While 
part of this elevation may be linked to reduced signal levels at the detectors due to coupling and insertion 
losses, it may also arise from amplified spontaneous emission noise introduced by the EDFAs used to boost both 
the pump and auxiliary lasers. This differs from the simulations, where the entire signal output is plotted after 
filtering out the pump and no amplifier noise is present. The experimental spectrum exhibits additional spectral 
features, including dips and broadened peaks, that are not present in the calculated results. These deviations 
may arise from various factors, including fabrication imperfections39, thermal fluctuations2, photodetector 
noise40,41, and non-ideal coupling conditions42. For instance, variations in the waveguide dimensions or surface 
roughness can lead to scattering losses and resonance shifts, affecting the comb’s spectral profile39. Similarly, 
temperature fluctuations can induce changes in the refractive index, altering the cavity’s resonance frequencies2. 
It is important to note that both the primary pump and auxiliary laser peaks are filtered out in the experimental 
spectrum using fiber Bragg grating filters. The observed spectral features, along with the power-related noise 
floor, provide valuable insights into the non-ideal behavior of the fabricated device and highlight the challenges 
associated with achieving perfect agreement between simulations and experiments.

Methods
Numerical model
The electric (E) and magnetic (H) field components of the electromagnetic wave propagating inside the dielectric 
ring can be represented as sums of three orthogonal vectors as follows

	 E(ρ, ϕ, z) =
{

ρ̂Eρ(ρ, z) + ϕ̂Eϕ(ρ, z) + ẑEz(ρ, z)
}

e−jνϕ, � (1)

	 H(ρ, ϕ, z) =
{

ρ̂Hρ(ρ, z) + ϕ̂Hϕ(ρ, z) + ẑHz(ρ, z)
}

e−jνϕ, � (2)

assuming e−jνϕ dependence, ν is the angular propagation constant, ρ is the radial distance from the origin to 
the point projected onto the xy plane, ϕ is the azimuthal angle, and z is the height or vertical distance from the 
xy plane. Our goal is to determine the ν and to compute the propagating modes (E and H) along the ϕ direction 
inside the dielectric ring for a given frequency (f), corresponding to the wavelength λ = c0/f , where c0 is the 
velocity of electromagnetic waves in vacuum.

To carry out modal analysis, we start with Maxwell’s equations to derive the Helmholtz wave equations for 
the electric and magnetic fields in a source-free, lossless, and non-magnetic medium. After expanding each term 
of the electric field equation, we obtain the following three sets of scalar equations by enforcing each side of the 
equation to be the same in the ρ̂, ϕ̂, and ẑ directions:

ρ̂ direction:

Fig. 10.  Measured (blue curve) and calculated (red sticks) power density as a function wavelength.
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Following a similar procedure on the Helmholtz wave equation for the magnetic field, we obtain three other 
equations. However, since we will only need the one along the ẑ direction, we provide it below for the sake of 
completeness.
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It is known that mixed electric field–magnetic field formulations allow for direct enforcement of boundary 
conditions on both electric and magnetic fields at interfaces between materials16. In single-field formulations, 
deriving the secondary field (electric from magnetic or vice versa) often complicates boundary condition 
enforcement, introducing errors at material interfaces25. From Maxwell’s equations, one can derive the following 
expressions:
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By using Eq. (8), we rewrite Eq. (3) in the following form
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Similarly, ρ̂ component of the H-formulation becomes
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Equations (10), (11), (5), and (7) can be cast into a matrix equation such as

	 MA + βLA − β2IA = 0,� (12)

where A = [Eρ Ez Hρ Hz]T , M  is the matrix independent of β, L is the linear term in β, and the last term is 
the quadratic term in β.
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This can be rewritten as a linear generalized eigenvalue problem by introducing an auxiliary variable F = βA, 
leading to MA + LF − Fβ = 0, which gives the augmented system:
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.� (27)

We solve this linear generalized eigenvalue problem using MATLAB’s eigs function, which is optimized for 
large sparse matrices. After solving, we retain only the physically meaningful modes (those with nring

eff < nring, 
where nring

eff = β/k0 is the effective index of the ring and nring is the refractive index of the material which ring 
is made from.)

Experiment setup
Figure 11 illustrates the experimental configuration used to study the dynamics of frequency comb generation 
in a dielectric waveguide coupled to a dielectric ring resonator. A primary pump laser initiates the generation 

Fig. 11.  Schematic of the experimental setup for frequency comb generation and analysis. The red solid 
lines indicate the primary laser path for soliton frequency comb generation, while the red dashed lines 
represent the auxiliary laser used to compensate for the resonator’s thermal shift. The output is analyzed using 
photodetectors, an oscilloscope, and an optical spectrum analyzer.
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of soliton frequency combs by leveraging nonlinear effects like Kerr nonlinearity and four-wave mixing within 
this system. To enhance stability and widen the operational range for solitons, an auxiliary laser is employed to 
regulate resonator power38. Each laser source is protected from back reflections by optical isolators positioned 
at its output. The pump light’s intensity is increased by an erbium-doped fiber amplifier (EDFA) before being 
coupled into the microresonator using a circulator. A second circulator performs two roles: it directs the output 
light to various measurement devices and allows the auxiliary laser to enter the resonator propagating counter 
to the primary pump. The optical output is converted to electrical signals by two photodetectors, enabling time-
domain analysis of the pulse train with an oscilloscope. Simultaneously, an optical spectrum analyzer measures 
the spectral features of the generated frequency comb. Before optical measurement, the strong residual pump 
and auxiliary peaks are removed from the optical spectrum using fiber Bragg grating filters (AOS), which provide 
a tuning range of approximately 10 nm (center wavelength ±5 nm), a FWHM bandwidth of ∼30–35 GHz, and 
a rejection ratio exceeding 38 dB.

Discussions
Our numerical method is highly accurate for simple geometries such as rectangles and circles in the ρ-z plane, 
where a 40 ppw grid is sufficient. Complex shapes require higher densities; we recommend starting at 40 PPW 
and increasing by 10 PPW until eigenvalues converge. For non-rectangular cross-sections (e.g., trapezoids in 
the ρ − z plane), a rectangular mesh causes geometric inaccuracies (“stair-step” effect), impacting boundary 
precision, the effective refractive index, and is especially problematic for higher-order azimuthal modes, 
potentially causing spurious effects.

When comparing these two methods, FEM vs. FDFD, we can confidently state that the more accurate and 
reliable approach for modal analysis is the FEM, which is renowned for its ability to handle complex geometries, 
material interfaces, and boundary conditions with high precision. Its flexibility in mesh adaptation and the 
use of higher-order interpolation functions makes it particularly suitable for problems requiring high accuracy, 
especially in regions with sharp field variations or subwavelength features. However, for large-scale parametric 
studies–such as simulating hundreds of ring resonator designs across tens of wavelength values–the FDFD 
method offers a compelling trade-off between accuracy and computational efficiency. When implemented on 
high-quality, sufficiently refined grids, FDFD can produce results comparable to FEM in terms of accuracy. 
Moreover, due to its use of regular grids and simpler basis functions (typically piecewise constant or linear), 
FDFD solvers are often faster and require less memory than FEM solvers. This makes FDFD particularly 
advantageous for inverse design, optimization loops, or rapid prototyping scenarios that require thousands of 
simulations.

Conclusion
In this work, we presented a novel finite-difference frequency-domain formulation for electromagnetic 
modal analysis in dielectric ring resonators, addressing key limitations of existing methods. Our approach 
solves for both electric and magnetic fields simultaneously in cylindrical coordinates, eliminating spurious 
modes and ensuring accurate field solutions–particularly at material boundaries where earlier formulations 
failed. By avoiding coordinate transformations and retaining all field components, our method provides a 
complete description of hybrid modes, crucial for modeling microresonators used in optical frequency comb 
generation. We validated our solver through rigorous benchmarks against COMSOL Multiphysics, Tidy3D, and 
experimental data, demonstrating excellent agreement in effective refractive indices, dispersion profiles, and 
resonance characteristics. Notably, our method automates mode computation without requiring manual input 
for azimuthal mode numbers, significantly streamlining the design process. Applied to Si3N4 ring resonators, 
our solver accurately predicted anomalous dispersion near 1060 nm and reproduced experimental free spectral 
ranges and linewidths at 1550 nm, confirming its utility for Kerr frequency comb design.
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