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Chaos enables randomness-based applications, particularly in photonic systems. Integrated optical
frequency combs (microcombs) have previously been observed in either chaotic modulation instability or
stable, low-noise dissipative Kerr soliton (DKS) regimes. In this Letter, we demonstrate a new microcomb
state where a single DKS exhibits chaotic behavior. By phase modulating the Kerr-induced synchronization
(KIS) between a DKS and an externally injected reference laser, we observe chaotic group velocity hopping
of the soliton, causing random transitions of the repetition rate. Using a chip-integrated octave-spanning
microcomb, we experimentally validate the second-order Adler equation describing KIS, allowing us to
predict and demonstrate this chaotic DKS hopping. This Letter connects nonlinear dynamics with optical
soliton physics, providing a deterministic framework for triggering microcomb chaos in the solitonic state.
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Introduction—Chaos manifests throughout nature: in
fluid turbulence [1], biological rhythms [2], electronic
circuits [3], and famously, atmospheric convection [4].
Mathematically, chaos occur in autonomous systems of
three nonlinearly coupled independent variables, where
small differences in initial conditions—inherent to any real
world system—lead to diverging outcomes, making future
prediction impossible. Photonic chaos has been studied in
lasers with feedback [5] and mode-locked systems [6].
Rather than an obstacle, optical chaos enables high-speed
random number generation [7], secure communication [8],
and reservoir computing [9].
In integrated frequency combs, chaotic dynamics

through modulation instability (MI)—arising from a con-
tinuous wave (CW) laser pumping an on-chip Kerr micro-
resonator—has applications in ranging [10], optical
decision making [10], and distributed encrypted commu-
nication [11]. Yet, most applications also benefit from the
creation of a fixed grid of frequency markers, typically
obtained from the creation of dissipative Kerr solitons
(DKSs) [12]. As unique solutions of the Lugiato-Lefever
equation (LLE) [13], DKSs exhibit robustness against
perturbation and serve as the cornerstone for deployable
metrology systems [14]. Therefore, to simultaneously
leverage equidistant frequency markers and chaotic behav-
ior, optical cavity solitons require an additional coupling

mechanism. This manifests in soliton bunches or mole-
cules, where internal dynamics can drive chaotic inter-
actions [15–17]. Yet, such behavior remains elusive in
integrated photonics, especially in the single DKS regime
driven by a single pump.
To access chaos in a single on-chip DKS, we phase-lock

the soliton to an externally injected reference laser using
Kerr-induced synchronization (KIS). In KIS the reference
captures one comb tooth [Fig. 1(a)], doubly pinning the
microcomb [18,19]. This creates a unique DKS attractor
that bypasses intrinsic microresonator fluctuations [20].
KIS differs significantly from other soliton synchronization
mechanisms [21–24]. While these other mechanisms can be
described by a first-order Adler equation—corresponding
only to the overdamped case—KIS can only be described
by an extended second-order Adler equation. Importantly,
this second-order equation describes a physical coupling
mechanism through phase modulation that enables a path to
chaos. However, thus far this model has only demonstrated
qualitative agreement in the KIS DC regime [18,25,26], and
its second-order temporal derivative—crucial for chaotic
DKS—remains experimentally unverified.
Here, we demonstrate the second-order Adler equation’s

validity for KIS using an integrated octave-spanning
microcomb. We quantitatively validate the model against
experiments and Lugiato-Lefever simulations in reference
carrier and sideband synchronization regimes, while also
demonstrating subharmonic locking—a phenomenon
unique to a high-order Adler equation [27]. Based on these*Contact author: gmoille@umd.edu
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insights, we leverage the Adler model’s predictions to
experimentally show chaotic DKS hopping between refer-
ence and sideband strange attractors, resulting in chaotic
group velocity hopping that appears as random jumps of
the microcomb repetition rate [Fig. 1(b)].
Phase-modulated Adler model—Our system consists of a

microring resonator driven by a CW main pump that
generates a DKS. The DKS circulates through the reso-
nator, with a portion periodically extracted into the bus
waveguide, creating a temporal pulse train at rate ωrep,
corresponding to a frequency comb in the spectral domain.
Aweak CW reference pump, injected into the resonator at a
frequency close to a DKS comb tooth, interacts with the
DKS through the χð3Þ nonlinearity. This interaction phase-
locks the DKS, synchronizing both group and phase
velocities of the DKS and reference intracavity field.
Equivalently, the reference pump captures the nearest
DKS comb tooth, while the dual-pinning by the main
and reference pump frequencies disciplines the comb’s

repetition rate [Fig. 1(a)]. This synchronization mechanism
obeys a second-order Adler equation that can be derived
from the multipump Lugiato-Lefever equation [28] (see
Supplemental Material [29]):

β
∂
2φðτÞ
∂τ2

þ ∂φðτÞ
∂τ

¼ αþ sinðφÞ; ð1Þ

with the normalized time τ ¼ Ω0t, where Ω0 ¼ 2μsD1Ekis
is the half-synchronization KIS window. Here, D1 is the
free spectral range around the main pump, and μs is the
modal separation between the main and reference pumps.
The KIS energy Ekis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðμsÞPrefκext

p
=κEdks depends on

the soliton energy Edks, comb tooth energy E0ðμsÞ at
synchronization mode μs, reference pump power Pref,
and total and coupling loss rates κ and κext, respectively.
The phase difference φ (modulo 2π) is between the DKS
and reference color. Ω ¼ Δωceo=Ω0 represents the normal-
ized frequency offset between reference and closest comb
tooth, vanishing at synchronization. The synchronization
detuning factor is α ¼ ϖ=Ω0, with ϖ being the reference
frequency offset from natural comb tooth frequency. The
McCumber coefficient [38] β ¼ Ω0=κ characterizes system
bistable dynamics.
In the phase-modulated reference regime [Fig. 1(b)],

Eq. (1) becomes (Supplemental Material S2 [29])

∂ψðτÞ
∂τ

¼ Ωext;

∂φðτÞ
∂τ

¼ Ω;

β
∂ΩðτÞ
∂τ

¼ −Ωþ αþ sin ½φþ A cosðψÞ�. ð2Þ

Here, Ωext ¼ ωrf=Ω0 denotes the normalized phase modu-
lation frequency. Equation (2) now exhibits a fixed point at
α ≈ nΩ for any β, generating (not necessarily circular)
closed orbits in the fφ;Ωg space. Hence, through the
introduction of the reference phase modulation, Eq. (2)
becomes an autonomous system of three nonlinearly
coupled independent variables and can exhibit, among
other nonlinear strange attractors [39], chaotic behavior.
Model verification—On its own, Eq. (1) only allows for

qualitative verification of the KIS frequency width Ω0, and
synchronization does not necessarily require a second-order
Adler equation. By contrast, Eq. (2) supports far richer
dynamics. Equation (2) is equivalent to the resistively and
capacitively shunted junction model of an ac-driven
Josephson junction [27,40], where subharmonic synchroni-
zation emerges from the second-order derivative [27]. The
experimental observation of such behavior would validate
the necessity of a second-order Adler equation and suggest
that its other predictions—such as chaotic behavior—may be
experimentally accessible.

(a)

(b)

FIG. 1. Kerr-induced synchronization (KIS): Direct and phase-
modulated versions. (a) Direct KIS occurs when a weak
continuous-wave reference laser enters a microring resonator
containing a dissipative Kerr soliton (DKS) pumped by a main
laser. The Kerr nonlinearity synchronizes the reference and DKS
when their phase difference is small, dual-pinning the microcomb
repetition rate ωrep through the capture of one comb tooth.
(b) Under phase modulation, the DKS can lock to multiple
reference attractors with distinct walk-off, hence leading to
different group velocity locking; correspondingly a comb tooth
locks to either the carrier or a sideband, causing an abrupt ωrep

change. We examine the Adler model accuracy for KIS, predict-
ing chaotic DKS ωrep hopping.
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Our system, detailed in Supplemental Material S3 [29],
consists of a 23 μm radius Si3N4 microring resonator gen-
erating an octave-spanning DKS microcomb [Fig. 2(a)]. It is
synchronized with a ωrf=2π ¼ 200 MHz modulated refer-
ence pump at azimuthal mode μs ¼ −90 (192.5 THz). We
measure the microcomb instantaneous repetition rate change
Δωrep against the natural reference detuning ϖ (i.e., the
detuning relative to the unsynchronized comb tooth). KIS
occurs for the sameoptical frequencydivision (OFD) factorμs
as in the unmodulatedKIScase forReff ¼μs∂Δωrep=∂ϖ−1≡
∂Ω=∂α¼0. As expected, synchronization occurs around the
reference pump and its sideband [Fig. 2(b)]. The size of the

KIS window scales with the absolute values of the first order
Bessel functions J0ðAÞ and J1ðAÞ, corresponding to the
amplitude of the reference carrier and sideband from the
expansion of Eq. (2). We also observe the subharmonic
synchronization tongues, known as Shapiro-steps in super-
conducting systems [41], emerging at ϖ ≈ pωext=m, with
observations up tom ¼ 3, which arewell known in ac-driven
Josephson junctions.
We numerically reproduce the experimental result

[Fig. 2(c)] by extracting the low-pass filtered DKS repeti-
tion rate using the modified Lugiato-Lefever equation
[28,42,43] that accounts for the reference modulation
(Supplemental Material S1 [29]):

∂aðθ; tÞ
∂t

¼ −
�
κ

2
− iδω0

�
aþ iDðaÞ − iγjaj2aþ iF0

þ iFref exp

�
i½ϖtþ A cos ðωrftÞ� þ iμsθ

�
; ð3Þ

with the resonator parameters (Supplemental Material S1
[29]) which are the effective nonlinearity γ, the total and
coupling loss rates κ and κext, and the dispersion operator
DðaÞ. Aðμ; tÞ is the azimuthal Fourier transform of aðθ; tÞ,
δω0 is the main pump detuning, and F0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
κextP0

p
and

Fref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κextPref

p
represent the main pump and reference

energy based on experimental power measurements,
respectively. In the first sidebandapproximation, the reference
modulation expands as the sum of two driving fields
iJ0ðAÞFref expðiϖtþiμsθÞ and iJ1ðAÞFref exp½iðϖ�ωrfÞtþ
iμsθ�. Outside of the synchronization regime initiated by the
carrier, the system forms a multicolor soliton [42] with
components a0 from theDKS, aref from the reference carrier,
and asb from the sideband. These components travel at
identical angular group velocity but different angular phase
velocities. The system can be decomposed through a multi-
color expansion a ¼ a0 þ arefeiμsθ−iϖt þ asbeiμsθ−iðϖþωrfÞt
[42,44], which after reinjection in Eq. (3) yields the master
equation for the soliton (Supplemental Material S1 [29]):

∂a0
∂t

¼ −
�
κ

2
− iδω0

�
a0 þ iDða0Þ

− iγðja0j2 þ 2jaref j2 þ 2jasbj2Þa0
− 2iγa�0arefasbe

ið2ϖ�ωrfÞtþiμsθ þ iF0: ð4Þ

The parametric tone 2γa�0arefasb, produced by four-wave
mixing between the DKS, reference, and sideband, generates
an idler that synchronizes the DKS when their phase differ-
ence approaches zero (2ϖ � ωrf ≈ 0). This synchronization
occurs at reference detuning ϖ ≈�ωrf=2, analogous to the
recently observed parametric-KIS [45], in which synchroni-
zationoccurswithout direct comb tooth capture by an injected
reference. The model extends to higher sideband orders,
explaining subharmonic synchronization atϖ ≈�nωrf=p in
simulations and experiments. Finally, we verify the Adler

(a)

(b)

(c)

(d)

(e)

FIG. 2. Adler model verification from repetition rate entrain-
ment. (a) Octave-spanning microcomb from the integrated micro-
resonator (inset), pumped at ω0=2π ¼ 282.3 THz with the KIS
reference at μs ¼ −90 (ωref=2π ¼ 192.5 THz). A cooler laser at
307.6 THz thermally stabilizes the resonator. (b) Mapping of
Reff ¼ ∂Ω=∂ϖ with reference detuning ϖ and modulation depth
A, highlighting DKS comb tooth capture when Reff vanishes.
(c) LLE modeling and (d) Adler equation modeling, showing that
the reduced model accurately captures the system dynamics.
(e) Repetition rate disciplining from experiment (blue), LLE
(green), and Adler (pink) at A ¼ 1 [dotted line in (b),(c)] shows
excellent agreement. The disciplining occurs at the reference, its
sideband, and phase-modulation subharmonics via four-wave
mixing, as in the schematic.
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model inEq. (2), normalizing it fromtheexperimentalvalueof
the KIS half-window Ω0 ¼ 130 MHz at A ¼ 0 and κ ¼
200 MHz (i.e., β ¼ 0.65) which, along with ωrf , is sufficient
to define all parameters of Eq. (2). We compare these results
against both the LLE and experiment [Fig. 2(d)] by extracting
the low-passed filter Δωrep at A ¼ 1, showing excellent
agreement. The repetition rate disciplining occurs at the
reference, its sideband, and subharmonics of the phase
modulation frequency from the nonlinear interaction. The
experimental repetition rate disciplining is accurately cap-
tured by both the LLE and Adler models [Fig. 2(e)].
Low-pass filtered detection of Δωrep, from which we

derive Reff , helps us visualize the fixed point and subhar-
monic synchronization against modulation depth A.
However, it does not fully confirm that the KIS dynamics
follow the phase modulated Adler model. Because Eq. (2)
represents a driven system, its stable points appear as fixed
points under 2π=ωrf stroboscopic observations (or via low-
pass filtering as previously described) but, for any other
observation, manifest as a closed orbit or a limit cycle
for synchronized and unsynchronized cases, respectively
[Fig. 3(a)]. Hence, Fourier analysis of Ω will allow us to
verify the Adler model. Experimentally, we capture the full
dynamics within the ωrf=2π ¼ 200 MHz bandwidth by
directly measuring the beat frequency between the reference
laser and its nearest comb tooth for a modulation depth
A ¼ 1.33. From the spectrogram of Δωceo ¼ Ω ×Ω0, the
two synchronization regimes appear: direct synchronization
and subharmonic locking. Direct synchronization from the
carrier or sideband produces a single tone at the spinning
frequencyωrf of the closed orbit, while subharmonic locking
generates harmonics at p × ωrf=n (notably at p × ωrf=3).
This latter state shows reduced noise compared to the
unsynchronized regime [Fig. 3(b)], indicatingmode-locking
despite the absence of direct comb tooth capture. Both the
LLEmodeling and the Adler model of Eq. (2) reproduce the
complete spectrogram, with the latter also capturing all
frequencies in the limit cycle case outside synchronization.
Chaotic group velocity hopping—Having shown that the

second-order Adler equation accurately describes the sol-
iton phase dynamics under KIS, we now apply this model
to predict the regime in which chaotic behavior of the DKS
is expected. Geometrically, it is intuitive to view both chaos
and the regimes studied in the preceding sections in the
ðφ;ΩÞ space [Fig. 4(a)], which is cylindrical since φ is 2π
periodic while Ω is unbounded [46]. The computational
solution of Eq. (2) confirms that, for α ¼ 0.58, the strange
attractor orbiting aroundΩ ¼ 0with a null winding number
in the φ revolution coexists with the strange attractor with
unitary winding number orbiting around Ω ¼ 1 [Fig. 4(b)]
and in contrast to the cases in Fig. 4(a) that display only a
single attractor. We confirm the chaotic behavior by
simulating two systems with identical parameters with
the exception of an offset in initial condition by
Δφ ¼ 10−15, from which we can extract a phase separation

at all normalized times τ [Fig. 4(c)]. We extract the
maximal Lyapunov exponent [47], yielding a growth rate
of 2π × 5.33 × 10−2, which is hence greater than zero and
confirming chaotic behavior, in contrast to standard KIS
(yielding a zero growth). We also perform a 0–1 test [48]
that confirms the chaotic behavior under the chosen
conditions.
We demonstrate chaotic KIS behavior experimentally by

setting ωrf=2π ¼ 850 MHz, which is about the half-KIS
window Ω0 for our system and a reference pump power
Pref ¼ 300 μW. At the boundary between carrier- and
sideband-KIS regimes, chaos emerges as both strange
attractors coexist. Since each attractor corresponds to a
different comb tooth capture process (the carrier or the
sideband), each attractor correspond to a fixed microcomb
repetition rate. From simulations, this chaotic region spans
nearly 100 MHz and is ample for easy laser frequency
tuning and parking. The chaotic transition between each
attractor creates a repetition rate jump, appearing in the

(a)

(b)

(c)

(d)

FIG. 3. Adler model verification from the dynamical spectro-
gram. (a) Homodyne Δωceo spectrogram obtained for
(ωrf=2π ¼ 200 MHz and A ¼ 1.3). (b) Left: close-up between
detuning −ωrf < ϖ < 0, highlighting subharmonic locking.
Right: fixed-detuning spectra, showing the low-noise regime
of subharmonic locking mediated by four-wave mixing ① and ③

while the unsynchronized state ② yields broader linewidths from
optical beating between the comb tooth and the reference.
(c) LLE and (d) Adler equation simulations experiments, con-
firming the Adler model’s validity.
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spectrum analyzer as coexisting tones separated by ωrf=μs
[Fig. 4(d)]. A spectrogram recording shows the temporal
transitions between repetition rates [Fig. 4(e)]. From this
data, we perform a chi-square test (see Supplemental

Material S4 [29]) yielding p values of p ¼ 0.81 and p ¼
0.96 for −1 and þ1 random walk, respectively, and
confirming the chaotic behavior under such specific KIS
conditions.
Discussion—In conclusion, our combined experimental

and theoretical work quantitatively verifies that the second-
order Adler model accurately describes KIS DKS dynam-
ics. Moving from dc behavior to a phase-modulated regime,
we observe unique subharmonic synchronization from the
second-order KIS Adler model. This verification confirms
the Adler model as a predictive tool for DKS behavior.
Specifically, the phase-modulated Adler model predicts
conditions for chaotic behavior intuitively and with much
less computational cost than full LLE modeling. We
experimentally confirm this by chaotic repetition rate
hopping of an octave-spanning DKS microcomb at a phase
modulation comparable to the KIS half-window. Our Letter
presents a new tool for generating optical chaos on a low-
power, on-chip platform, harnessing a single low-noise
DKS with the secure randomness of chaotic systems. By
showing that chaotic behavior in microcombs extends
beyond MI states, we enable further studies of novel
DKS regimes. While our demonstration uses a phase-
modulated injected reference, the Adler model remains
agnostic to which oscillator is modulated, suggesting that
these observations would apply to breather states. Beyond
chaos, our verification that KIS follows a second-order
Adler equation provides insight into complex behaviors,
including indirect comb tooth capture via coherent four-
wave mixing and may clarify unexplained frequency comb
or soliton synchronization observations [49,50]. The sec-
ond-order Adler equation also describes short Josephson
junctions [27], suggesting potential cross-field insights
similar to developments in on-chip optical synthetic
dimensions [51–54] and optical topological systems
[23,55–57]. This approach may overcome synthetic fre-
quency lattice limitations imposed by the fast round-trip
time of integrated cavity solitons.
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(a)

(b)

(c)

(d)

(e)

FIG. 4. Toward stable-DKS chaotic behavior. (a) Adler simu-
lation of the modulated reference system highlights attractors in
fφ;Ωg space. As φ is 2π-periodic, the projection is cylindrical.
Solid lines show closed orbits at Ωext; markers show 2π=Ωext
stroboscopic observation highlighting synchronizations. (b) Phase
modulated Adler simulation for α ¼ 0.58 shows two coexisting
attractors (green) orbiting around Ω ¼ 0 (blue, carrier-KIS) and
Ω ¼ 1 (red, sideband-KIS), leading to the chaotic behavior.
(c) Phase separation between initially offset systems
(Δφ ¼ 10−15) reveals chaos via exponential growth and maximal
Lyapunov exponent λ ¼ 2π × 5.33 × 10−2. The 0–1 test confirms
chaos (K ¼ 1), unlike direct-carrier-KIS (no growth and K ¼ 0).
(d) Experimental RF spectrum for carrier-KIS (blue) and side-
band-KIS (red). In chaos, dual repetition rate DKS appears,
separated by the OFDed modulation ωrf=μs ¼ 2π × 9.44 MHz.
(e) The spectrogram confirms stable-DKS chaos, showing hop-
ping between the two repetition rates. Inset: enlarged view at
180 ms reveals random synchronization states.
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S.1. Modified Lugiato Lefever Model

The Lugiato-Lefever equation models nonlinear dynamics in microring resonators [1], and in the case of multiple
pumping can be written as [2]:

∂a

∂t
=

(
−κ
2
+ iδω0

)
a+ i

∑
µ

Dint(µ)ã(µ, t)e
iµθ − iγ|a|2a+ i

√
κextP0 + i

√
κextP−exp(iφref + iµsθ) (S.1.1)

with θ the azimuthal angle, ã(µ, t) the Fourier transform of a(θ, t) with respect to θ, and Dint = ωres(µ)− (ω0 + ω
(0)
repµ)

the modified integrated dispersion (which in practice is determined from finite element method microring eigenmode
simulations that match experimental data) with ωres(µ) the resonant angular frequency of mode µ relative to the main

pumped mode and ω0 the main pump angular frequency. ω
(0)
rep is the unsynchronized repetition rate, and µ the relative

mode number to the main pumped mode. For critical coupling, κ/2π = 180 MHz and κext = κ/2 define the total and
coupling loss rates. The effective nonlinearity γ = 2πRn2ω0/Aeff (ω0)c uses R = 23 µm, n2 = 2.5 × 10−15 W/cm2, and
Aeff = 0.464 µm2. P0 = F 2

0 /κext, ω0/2π = 283.5 THz, and δω0 represent the power, frequency and detuning of the

main pump. The reference pump mode µs has power Pref = F 2
ref/κext and offset ∂φref/∂t = ϖ = ωref − ω0 − µsω

(0)
rep =

δω0 − δωref +Dint(µref) from the closest soliton comb tooth.
The phase modulation can be directly implemented by adding a time-dependence to the phase term in Eq. S.1.1:

∂a

∂t
=

(
−κ
2
+ iδω0

)
a+ i

∑
µ

Dint(µ)ã(µ, t)e
iµθ − iγ|a|2a+ i

√
κextP0 + i

√
κextP−exp [i (φref +A cos(ωrft)) + iµsθ]

(S.1.2)

In the small modulation amplitude regime, or when the reference pump detuning δωref from its closest comb tooth
is less than the phase modulation frequency ωrf , the Bessel expansion can be truncated to first order:

∂a

∂t
=

(
−κ
2
+ iδω0

)
a+ i

∑
µ

Dint(µ)ã(µ, t)e
iµθ − iγ|a|2a+ i

√
κextP0 + iJ0(A)

√
κextP−exp [iϖt+ iµsθ]

− J1(A)
√
κextP−exp [i (ϖ + ωrf) t+ iµsθ]− J1(A)

√
κextP−exp [i (ϖ − ωrf) t+ iµsθ] +

(S.1.3)

which is equivalent to a DKS with three auxiliary lasers pumping at ϖ and ϖ ± ωref . At ϖ ≈ ±ωref , the phase of one
auxiliary force aligns with the DKS, enabling direct synchronization at the carrier or sideband.
Beyond these cases, the system produces a multi-color soliton where auxiliary forces generate waves with locked

group velocities to the DKS but different phase velocities. This results in distinct accumulated phases per round-trip
and frequency components that share the comb tooth spacing ωrep but are offset by ϖ and ϖ ± ωrf . These colors can
be expanded into:

a = a−exp [i(ϖ − ωrf)t] + a0 + arefexp [iϖt] + a+exp [i(ϖ + ωrf)t] (S.1.4)

As shown in [3, 4], substituting Eq. (S.1.4) into Eq. (S.1.3) and retaining only phase matched terms yields the system
of equations:

∂a−
∂t

=
(
−κ
2
+ iϖ−

)
a− + i

∑
µ

Dint(µ)ã−(µ, t)e
iµθ − iγ

(
|a−|2 + 2|a0|2 + 2|aref |2 + 2|a+|2

)
a−

− iγa20a
∗
refe

−iWt − J1(A)
√
κextPref (S.1.5)

∂a0
∂t

=
(
−κ
2
+ iδω0

)
a0i

∑
µ

Dint(µ)ã0(µ, t)e
iµθ − iγ

(
2|a−|2 + |a0|2 + 2|aref |2 + 2|a+|2

)
a0

− 2iγa∗0arefa−e
iWt + i

√
κextP0 (S.1.6)

∂aref
∂t

=
(
−κ
2
+ iϖref

)
aref + i

∑
µ

Dint(µ)ãref(µ, t)e
iµθ − iγ

(
2|a−|2 + 2|a0|2 + |aref |2 + 2|a+|2

)
aref

− iγa20a
∗
−e

−iWt + iJ0(A)
√
κextPref (S.1.7)

∂a+
∂t

=
(
−κ
2
+ iϖ+

)
a+ + i

∑
µ

Dint(µ)ã+(µ, t)e
iµθ − iγ

(
2|a−|2 + 2|a0|2 + 2|aref |2 + |a+|2

)
a+

− J0(A)
√
κextPref (S.1.8)
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with W = 2ϖ − ωrf . The system synchronizes at W = 0 (equivalently at ϖ = ωrf/2) through parametric interaction
between the DKS a0, the reference aref, and its sideband a−. Since a0 and a− are driven at µs near a comb tooth,
phase matching of the parametric interaction occurs at µs, yielding the same OFD as direct or side-band KIS.

A similar principle governs the positive sideband and higher harmonics, demonstrating that sub-harmonic locking at
pωrf/m arises from parametric Kerr-induced synchronization.

S.2. Adler equation model in static and phase modulated regimes

1. Adler equation in the static regime

In the unmodulated KIS, the phase offset between DKS and reference laser relates directly to their frequency
difference:

∂φ

∂t
=
∂φref − φdks

∂t
= ϖ

= ωref − (µsωrep + ωo)
(S.2.1)

With ωref and ω0 denoting the reference and main pump frequencies, µs representing the mode relative to the pumped
mode at synchronization, and ωrep = vg/R the repetition rate (where vg is the group velocity of the DKS and R the
microring radius), we normalize the phase to φdks = 0. The optical frequency division (OFD) occurs at synchronization
when ∂φ/∂t = 0

ωrep =
ωref − ω0

µs
(S.2.2)

In the small amplitude approximation of the reference pump power Pref outside synchronization, the DKS repetition
rate remains unaffected by the reference pump [5], expressed as:

∂ωrep

∂t
= − 1

Edks

∑
µ

D1(µ)

(
∂ã(µ, t)

∂t
ã∗(µ, t) + ã(µ, t)

∂ã∗(µ, t)

∂t

)
(S.2.3)

Using the Fourier transform of the Lugiato Lefever equation (Eq. (S.1.1), Eq. (S.2.3)), we obtain:

− 1

κ

∂ωrep

∂t
= −2D1Ekis sin(φ)− ωrep −D1 (K0 +KNL) (S.2.4)

where we introduce the normalized KIS energy Ekis =
√
E0(µs)Prefκext/κEdks, with Edks =

∫ π

−π
|a|2dθ as the total

soliton energy and its order of magnitude is ≈ 10−9 J, and E0(µs) = |ã(µs)|2 which order of magnitude is ≈ 10−14 J
for a dispersive wave. For the weakly dispersive resonator, D1(µ = 0) ≈ D1(µ = µs) = D1. The pump frequency shift
and the self-phase modulation frequency shift are:

K0 = 2
√
κext

P0

κEdks
(S.2.5)

KNL =
γ

κEdksD1

∑
µ

D1(µ)

ã∗ (µ, t)∑
α,β

ã(α, t)ã∗(β)ã(α− β + µ, t)− c.c

 (S.2.6)

From the steady state of Eq. (S.2.4), one find that D1(K0 +KNL) ≈ ωrep since Ekis ≪ 1
Eq. (S.2.1) relates the phase offset to the temporal variation in repetition rate at fixed optical frequencies:

∂ωrep

∂t
= − 1

µs

∂2φ

∂t2
(S.2.7)

Using Eqs. (S.2.1), (S.2.4) and (S.2.7), and noting that ωref − ω0 −D1µs(K0 +KNL) ≈ δωref + µsωrep − µsωrep is
the frequency offset δωref of the reference relative to its nearest comb tooth at µs, we obtain the normalized Adler
equation:

β
∂φ2

∂τ2
+
∂φ

∂τ
= α+ sin(φ) (S.2.8)
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The normalization in Table I establishes the Adler model’s universality, extending beyond Kerr-induced synchroniza-
tion to driven damped pendula [6] and Josephson junctions [7].

Eq. (S.2.8) can be rewritten as a system of first order differential equations, yielding equation (1) of the main text
where U = αφ+ cos(φ) + 1. 

∂φ

∂τ
= Ω

β
∂Ω

∂τ
= −Ω +

∂U

∂φ

(S.2.9)

Table I: Physical parameters used in the normalized Adler equation – for KIS, the parameters are extracted
from the LLE and the experiment.

Damped pendulum un-
der constant torque [6]

Josephson junction [7] Kerr-induced synchronization [5]

τ = Ω0t
mgl

v

2e

ℏ
IcRt 2|µs|D1Ekist

Γ
mgl

I

1

RC
κ

β =
Ω0

Γ

I

v

2e

ℏ
IcR

2C
2|µs|D1Ekis

κ

α =
Ωext

Ω0

v

mgl
Ωm

Iext
Ic

δωref

2µsD1Ekis

2. Phase modulated Adler equation

The phase modulation of the reference, introduced in Eq. (S.1.2),changes φref → φref +A cos (ωrft). The derivation
proceeds as above, incorporating this reference phase modulation:

∂φ

∂t
=
∂φref − φdks

∂t
= ϖ − ωrfAsin (ωrft)

= ωref − ωrfAsin (ωrft)− (µsωrep + ωo)
(S.2.10)

which can be recast as:

ωrep =
1

µs

[
ωref − ω0 − ωrfAsin (ωrft)−

∂φ

∂t

]
(S.2.11)

from which we obtain:

1

κ

∂ωrep

∂t
= − 1

κµs

∂2φ

∂t2
− A

κµs
ω2
rf cos (ωrft) (S.2.12)

Using Eqs. (S.2.4), (S.2.10) and (S.2.12), we derive the phase-modulated Adler equation:

β
∂φ2

∂τ2
+
∂φ

∂τ
= α+ sin(φ+A cos (Ωextτ)) +Aη cos(Ωext + δϕ) (S.2.13)

with η = ωrf

√
κ2 + ω2

rf/µsκΩ0 and δϕ = tan−1 (ωrf/κ). Under conditions where the synchronization mode is far from
the main pump µs ≫ 1, the term η ≈ −0.042 becomes negligible for working amplitude depth A near unity, given
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ωrf/2π = 200 MHz, Ω0/2π = 120 MHz, κ/2π = 100 MHz, and µ = −88. The equation can be expanded using the
Bessel expansion for small detuning up to the first sideband:

β
∂φ2

∂τ2
+
∂φ

∂τ
= α+ J0(A) sin(φ)± J1(A) sin (Ωextt) (S.2.14)

We can express this as a system of first-order differential equations, as shown in equation (2) of the main text:



∂φ

∂τ
= Ω

∂ψ

∂τ
= Ωext

β
∂Ω

∂τ
= −Ω + α+ J0(A) sin(φ)± J1(A) sin(ψ)

(S.2.15)

S.3. Experimental Setup
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Fig. S.1 – Experimental Setup A 283 THz continuously tunable laser (1060 CTL) is amplified by a ytterbium-doped fiber amplifier
(YDFA) and aligned to the transverse electric (TE) mode with a polarization controller (PC) to pump the microring resonator. A 306 THz
laser (980 CTL), counterpropagating in transverse magnetic (TM) polarization, thermally stabilizes the microring and enables adiabatic
access to the DKS. The 193 THz reference laser (1500 CTL) passes through a lithium-niobate electro-optic (EO) phase modulator driven by
a radiofrequency (RF) synthesizer. An optical spectrum analyzer (OSA) measures the comb spectrum. Two cascaded EO phase modulators
translate adjacent comb teeth into a detectable beat to measure the DKS repetition rate. The CEO offset beat is obtained by splitting the
comb at 1550 nm with a wavelength demultiplexer (WDM) and detecting the interference with a fast photodiode.

Our experimental resonator consists of a 670 nm thick Si3N4 microring resonator in SiO2 with a 23 µm radius
and 850 nm ring width. A 460 nm wide bus waveguide wrapped in a 17 µm pulley and offset by a 600 nm gap
provides for dispersion-less coupling [8]. The experimental setup [Fig. S.1] employs a 1060 nm continuously tunable
laser (CTL), amplified by an ytterbium-doped fiber amplifier (YDFA). When pumped at 282.3 THz with 150 mW
on-chip power, a dissipative Kerr soliton (DKS) state emerges in the fundamental transverse electric (TE) resonator. A
counterpropagating, cross-polarized counter-propagative 307.6 THz laser amplified using an tapered amplifier (TA)
provides thermal stabilization for adiabatic DKS access[9, 10], while minimizing nonlinear pump mixing. We employ
wavelength demultiplexers (WDMs) at both ports to prevent cross-injection between the cooler and main pump.
The 1550 nm CTL reference laser, modulated by a lithium-niobate phase modulator driven by a radiofrequency
synthesizer, enters the resonator in TE polarization via WDM combination with the main pump. A 50 % tap at
the output directs light to an OSA for microcomb spectrum analysis. A WDM at the other 50 % output separates
wavelengths near 1100 nm, which undergo electro-optical (EO) modulation at ΩRF/2π = 17.84420 GHz. The EO-
generated sidebands of adjacent DKS comb teeth fill the DKS repetition rate over N = 56 EOcomb teeth, measuring
ωrep = N ×ΩRF + δωbeat = 2π × (999.275241 + δωbeat) GHz (the plus sign is configuration dependent and verified
experimentally), where δωbeat is the EOcomb beat note detected by a 50 MHz avalanche photodiode (APD), as
in [5, 11].

From this measurement, we extract the detuning between the reference laser and the comb tooth, assuming a calibrated
reference detuning against the unsynchronized comb ϖ. Since the repetition rate is disciplined at the OFD rate µs, we
have ∆ωrep = ∆δbeat = ϖµ−1

s . From such relation, it is obvious that the comb tooth is captured by the reference as no
beat can be recorded between them two since ∂(µs∆ωrep −ϖ)/∂ϖ = 0. The system presents a low dispersion, thus
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the group velocity of the different colors outside of KIS are bound through cross-phase modulation [12, 13]. Therefore
the previous relationship extends beyond the KIS window such that ∆ωceo = ∂(µs∆ωrep −ϖ)/∂ϖ ≡ ∂Ω/∂α. Hence,
from the recording of the instantaneous repetition rate variation, we are able to recreate the mapping of a fixed point
presented in Figure 2.

The remaining WDM output measures the homodyne beat between the reference and its nearest comb tooth. Both
signals undergo time-domain processing using an electrical spectral analyzer triggered to the reference frequency sweep
voltage ramp, converting the photodiode’s IQ temporal signal to spectrograms and measuring instantaneous frequency.
The repetition rate is bounded by the APD bandwidth, hence its spectrogram enables to retrieve the low-passed filter
repetition rate disciplining. However, the photodiode used for the homodyne is fast enough to resolve the modulation
frequency, hence enables for the latter enables for the reconstruction of the spectrogram shown in Figure 3.

S.4. Randomness results

We performed randomness tests according to the NIST SP 800-22 standard [14], which includes a suite of statistical
tests to evaluate the randomness of binary sequences and provided through a python package [15]. The tests were
applied to the DKS repetition rate time series, which was sampled at 280 MHz (i.e. as close as possible to the photon
lifetime with the instrument in use) for 400 ms and yielded a total of 112× 106 samples. The data are processed such
that they are converted to a binary sequence based on which attractor (carrier or side-band) the repetition rate is
pinned to. The results are summarized in Table II and Table III, confirming the randomness of the chaotic repetition
rate hopping induced by the phase-modulation of the Kerr-induced synchronization.

Table II: Frequency monobit test of the repetition rate hopping time series

Test P-Value Conclusion

Frequency (Monobit) Test 0.6142348491858782 Random

Table III: Chi-squared test of the repetition rate hopping time series

State Chi-Squared P-Value Conclusion

- 4 9.357578281776533 0.0956238214109253 Random
- 3 12.49469090909091 0.0286034169822541 Random
- 2 4.856341189674524 0.4336630733098357 Random
- 1 2.272727272727273 0.8102640548687199 Random
+1 1.0 0.9625657732472964 Random
+2 3.3434343434343434 0.6471987509656730 Random
+3 6.476363636363637 0.2625845685276736 Random
+4 11.664192949907235 0.0396903797798626 Random
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