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Single solitons and intermode breathing solitons in MgF, microresonators
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Intermode breathers can be triggered by the avoided mode crossings in microresonators. Here, we numerically
and experimentally explore the breather and single soliton regimes as the pump-power and pump-cavity detuning
vary. Below a pump-power threshold, a single soliton regime is obtained within a detuning range. Above this
threshold, an intermode breather section emerges, resulting in a soliton-breather-soliton pattern in which the
system transits from a stable soliton to a breathing soliton and back to a stable soliton as the detuning increases.

DOLI: 10.1103/bkzf-65qy

I. INTRODUCTION

During the past 15 years, Kerr optical frequency combs
that are generated by microresonators have been the subject of
strong interest due to their many potential applications [1-4]
and have been the subject of a large number of theoretical and
experimental studies, including [5—12]. To generate frequency
combs in a microresonator, the usual method is to couple
a continuous-wave (CW) laser into a microresonator with
sufficiently high Q so that intracavity energy is high enough
for the Kerr effect to cascade energy into nonresonant longi-
tudinal modes whose angular group velocities become locked
[13,14], which can then create a number of different comb
states [5,15], including primary combs (Turing rolls), sec-
ondary combs (modulation-instability, MI) or soliton combs
(dissipative Kerr solitons).

Careful management of the optical pump power and fre-
quency detuning of the pump laser frequency from the
resonator mode frequency is crucial for access to the comb
states. In Refs. [16-20], the authors studied theoretically the
existence and stability of different comb states as a function of
the pump power and the cavity detuning. In [19] Lucas et al.
experimentally mapped the stability chart of solitons in the
pump-power detuning space and compared it with theoretical
predictions.

Soliton states are useful in practice because they generate
frequency combs with a constant free spectral range (FSR),
which in turn generate strong radio-frequency tones at fre-
quencies equal to the FSR and its harmonics after detection
in a photodiode. Single solitons [15,21], double solitons [22],
breathing solitons [23-25], and soliton crystals [12,20,26-29]
have all been observed in microresonators and testify to the
rich collection of optical wave forms that can be created in
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these devices. However, experimentally accessing particular
wave forms—and in particular, single solitons—can be an
experimental challenge due to thermal effects inside the mi-
croresonator. Several passive methods have been developed to
stabilize the temperature inside the resonator so that soliton
combs can be created and maintained [5-12,22,29-32].

On the other hand, the interaction between transverse
modes due to an avoided crossing can lead to a deterministic
generation of a soliton or a soliton crystal [15,20-22,29,33].

Recently, Guo et al. demonstrated a novel type of breath-
ing soliton triggered by avoided mode crossings [34] in
a microresonator. This new type of breathing soliton that
they named an “intermode breather soliton” occurs due to
a periodic energy exchange between the soliton and another
transverse mode family [34]. Moreover, as opposed to the
classical or intrinsic breather, the intermode breather only
appears in the same detuning range where a stable soliton
is expected. The intermode breather was first experimentally
observed by Lucas er al. [35] before being investigated in
more detail in Ref. [34]. In both works, the authors studied its
detuning dependence without exploring the effects of varying
the pump power.

In this work we experimentally explore soliton dynamics
by studying both the pump power and detuning dependencies
of the single soliton and intermode breather in a crystalline
magnesium fluoride (MgF,) microresonator. We map the oc-
currence of both the single soliton and intermode breather
regimes in the pump power—detuning parameter space. As
a function of detuning, our observations show that below a
threshold pump power stable breather solutions do not exist.
However, when the pump power is above this threshold, a
stable soliton can transition to an intermode breather and then
transition back to the soliton state, referred to as a soliton-
breather-soliton pattern, when the detuning is changed.

To perform this experiment, we adapt the approach de-
scribed by Cole et al. [32], where a backward-propagating
wave is used to both stabilize the temperature in the microres-
onator and to control the pump-cavity detuning.

We next numerically investigate the soliton and intermode
breather dynamics using the Lugiato-Lefever equation (LLE)
with an avoided crossing. The numerical results are consistent
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FIG. 1. Schematic of the experimental setup. A continuous-wave
(CW) laser is both forward (red solid) and backward (red dash)
coupled into a microresonator.

with our experimental observations. Notably, the numerical
model we use is based on the “standard” version of the LLE
[27], which does not allow for energy exchange between
transverse mode families. As such, we show numerically that
there does not need to be energy exchange of this sort for
intermode breathers to appear.

More recently, a similar result (soliton-breather-soliton)
was numerically reported by Chen et al. [36] in the presence of
loss modulation in the resonator. However, Chen et al. focused
instead on the intrinsic breather rather than on this transition.

II. EXPERIMENTAL RESULTS: SOLITONS
AND INTERMODE BREATHER GENERATION

To experimentally generate soliton combs, we adapt the
approach described by Cole et al. [32]. We show a schematic
illustration of the setup in Fig. 1. It is an all-fiber cou-
pled configuration. A CW laser (at 1550 nm) is split off
and 50% is directly amplified by an erbium-doped fiber
amplifier (EDFA), after which it is launched into a MgF,
whispering-gallery-mode microresonator with a free spectral
range of around 10 GHz. This forward-propagating optical
path is used to generate soliton combs. In addition, we use
a filter (FL) to suppress the amplified spontaneous emission
(ASE) noise. The second 50% of the laser light goes to an
acousto-optic modulator (AOM) that upshifts the pump fre-
quency by 40 MHz. The light is then phase modulated by
a PM (phase modulation) PDH (Pound-Drever-Hall) mod-
ulator that has a variable frequency. This phase-modulated
signal then propagates in the backward direction through
the resonator after being amplified by an EDFA. This
backward-propagating signal stabilizes the temperature of the
microresonator so that we can obtain stable solitons in the
microresonator [32]. We then mix the backward-propagating
signal after the photodetector with the output of the PDH
oscillator to produce a low-frequency voltage signal that is
sent to a proportional-integral-derivative (PID) controller in
order to lock the redshifted sideband to the resonance. By

manually varying the PDH oscillator frequency, we can con-
trol the pump-cavity detuning, § = vy — Vpump, Where vy and
Vpump are the resonance frequency and the pump laser fre-
quency, respectively, of the forward carrier from the cavity
resonance. The difference between the AOM (faom) and the
PDH (fppn) frequencies equals pump-cavity detuning (vo —
Voump = faom — feou) [32]. The output of both forward- and
backward-propagating signals are sent to an OSA (optical
spectrum analyzer), ESA (electrical spectrum analyzer), PNA
(phase noise analyzer), and an oscilloscope for characteriza-
tion. For the frequency and phase noise measurements, the
forward output signal is filtered by fiber Bragg grating (FBG)
filters, not shown in Fig. 1, in order to suppress the pump
light and then amplified by an EDFA before entering into a
photodetector (PD). We show the optical fibers in red and the
electrical cables in black.

By controlling the forward and backward pump power
and the detuning frequency, we can deterministically ob-
tain soliton combs when the laser is locked using the PDH
method, as described in the previous paragraph. In order to
compensate for thermal effects that can destabilize the soli-
ton, the backward power was fixed at 40 mW during the
experiments. Figure 2(a) shows the optical spectrum of the
single soliton that was generated with a forward pump power
P = 145 mW and with a detuning frequency § = 1.5 MHz.
The spike at 1552.5 nm is approximately 10 dB stronger than
the background hyperbolic-secant spectrum and is a charac-
teristic of an avoided crossing, indicating that two transverse
modes are interacting [34]. While we used the approach
described in Ref. [37] to measure the integrated dispersion
(Djny) of the microresonator around 1550 nm, we were unable
to experimentally accurately measure the avoided crossing
strength and location due to the noise present in our dispersion
measurements, which greatly exceeded the expected strength
value of the mode interaction.

In Fig. 2(b) we present the rf spectrum that is gener-
ated by the beat between the soliton comb lines and is
centered at around 9.9136 GHz, which equals the repetition
rate (frep) of the soliton in microresonator. The two side-
bands (smaller lines) are displaced from the repetition rate
frequency by 1.5 MHz, which corresponds to the detuning
frequency. Next, the detuning is held at 1.5 MHz and the
pump power is increased. Above P =~ 160 mW, two additional
sidebands appear in the electric spectrum analyzer, indicating
that the system has entered the soliton breather regime in
which the soliton amplitude is oscillating [23,24,35]. Fig-
ure 2(d) shows an example where the pump power is 190
mW. Sidebands are visible at around £1.38 MHz due to the
breathing frequency, which is lower than the repetition rate of
the soliton [23,24,35]. This intermode breathing appears due
to the avoided mode crossings and appears in the region of the
pump-power detuning parameter space where a single soliton
is stable. Our observation is in agreement with the reported
results in Ref. [35], where the detuning dependence was in-
vestigated. The corresponding optical spectrum is presented
in Fig. 2(c). Furthermore, we measure the phase noise in both
the soliton and breathing soliton regimes. Figure 3 displays
the single-sideband (SSB) phase noise level of both single and
breathing solitons. The breathing regime (red) shows an in-
creased phase noise relative to the single soliton (blue). Thus,
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FIG. 2. Single soliton and breathing regimes. (a), (c) Optical spectra for the single soliton and breather soliton, respectively. (b), (d) The

corresponding rf spectra centered at fr, = 9.9136 GHz.

as expected, breathing degrades the soliton stability [19,35].

In the last series of experiments, we studied the stability
of both soliton and breather dynamics in the pump power—
detuning parameter space. First, we locked the laser at a
fixed detuning with a pump power 2200 mW, which is the
maximum operating power in our system. Next, we fixed the
detuning while the forward-propagating pump power was var-
ied until the soliton disappeared. We then reset the detuning to
a new value and repeated the measurements. We recorded the
pump power and detuning and then mapped the results. The
backward pump power was approximately 30 mW.

In Fig. 4 we present the results for the breather and soli-
ton dynamics. In our experiment we found that the soliton
existence range is from § ~ 0.8 MHz to § ~ 2 MHz. We al-
ways obtained a CW regardless of the pump power for a
detuning § > 2 MHz, while we obtained a CW and then MI
combs for a detuning § < 0.8 MHz. When the pump power
was above P ~ 130 mW, a single soliton or an intermode
breathing soliton was observed depending on the detuning.
Depending on where in the pump power—detuning param-
eter space we were located experimentally, we found first
a soliton, then a breather, and finally a soliton, yielding a
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FIG. 3. Single soliton and breathing regimes. Phase noise spectra
of the single soliton (blue) and breather soliton (red).

soliton-breather-soliton pattern, which is in good agreement
with the Lucas et al. [35] predictions. We observe an inter-
mode breathing soliton over a detuning range of ~0.8 MHz
when P 2 185 mW. However, we also observed an inter-
mode breathing soliton over a detuning range of ~0.7 MHz
for 175 mW < P < 185 mW and over a detuning range of
~0.6 MHz for 165 mW < P < 175 mW. This result demon-
strates that the detuning range of the intermode breathing
soliton is dependent on the pump power. Moreover, the
soliton-breather-soliton pattern is reversible and reproducible
when the detuning is held constant and the pump power is
decreased and then increased. The same properties hold when
the pump power is held constant and the detuning is increased
or decreased.

III. NUMERICAL RESULTS: BOUNDARY TRACKING
OF SOLITON STABILITY

To better understand our experimental results, we ran nu-
merical simulations of the Lugiato-Lefever equation using the
dynamical methods developed in [27,38,39]. The version of
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FIG. 4. Experimental measurements. Stable region in the pump
power—detuning parameter space for single solitons and breather
solitons in detuning and power space.
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the LLE we used is written as

Iy

= —iDx Y + Y|y — (ia+ Dy + F, 1)

where ¥ is the normalized field envelope,  is normalized slow
time, « is the normalized detuning, F' is the normalized pump
power, and D % = Ft~'[Di, /], where Ft~! is the inverse
Fourier transform, Dy, () is the integrated dispersion, and 1}
is the Fourier transform of . In microresonators, the spacing
between longitudinal modes is given by the dispersion relation
() = wo + D1 + (D2/2)u* 4+ (D3/6)u® + -+ -, where p
is the relative mode number with respect to the pumped
mode located at w(iu = 0) and D, /2x is the FSR of the cav-
ity at o(u = 0). Din(1t) = o() — wy — Dy = (D2/2)* +

- corresponds to the higher-order dispersion present in the
microresonator. For GVD-dominant resonators where D3 and
higher-order terms can be ignored, such as in MgF, res-
onators, Diy = (D,/2)u? and thus D * = (8/2)3%y /362,
where 6 is the azimuthal coordinate around the microres-
onator and S is the normalized form of D,. To account for
avoided crossings, we add an extra term a/(u — b) to Diy,
where a is the normalized avoided crossing strength and b
is the avoided crossing location in terms of w, such that
D s = Ft~Y[(D2/2)u? + a/(u — b)]r} [33,40]. This for-
mulation of an avoided crossing assumes that the second mode
merely perturbs the dispersion of the first and has no further
effect, allowing us to consider only one set of longitudinal
modes. Additionally, the asymmetry in the dispersion due to
the avoided crossing will modify the soliton’s angular group
velocity, causing the soliton to rotate around the cavity with
a new group velocity vg = vy + vay, Where v, is the group
velocity, vy is the group velocity in the absence of the avoided
crossing, and v,y is the additional velocity from the avoided
crossing. As a result of this change in the group velocity, the
solitons in the LLE simulations drift. To obtain a stationary
solution, we modified Eq. (1) by adding a drift term. This
modified equation can be written as

oy
ot

=—iD* ¥ +ily Y — (o + Dy + F — ts%, )
where t; compensates for the induced drift [38]. We deter-
mined # in the process of solving for a stationary solution to
Eq. (2), as described by Wang et al. [38].

We begin our study of the system stability by linearizing
the LLE around the real and imaginary parts of a stable sta-

tionary solution such that

wr = I//ro + Al/frs
Vi = Yo + A, 3)

where v, and ; are real and imaginary parts of i, respec-
tively. The stationary solution ¥y = 9 + iv;0 is found using
a variant of the Newton-Raphson method applied to Eq. (2),
with 9y /0t set to zero while solving for #; simultaneously.
From there, we substitute Eq. (3) into Eq. (2) and obtain an
eigenvalue equation for the perturbations,

AW
—— =LAV, )
dt

where

[ [—zwrw,- — 1+ D; + Dy

—y2 =3y} +a+D,
3Wr2+1/f,2—01+7>r ’

299 — 1+ D; + 1D,
&)

and

| AY
AW — [ A 1/1,} ©)

The parameters D, and D; are the real and imaginary parts of
D, respectively, and D, = Ft~'[D, ] is the inverse Fourier
transform of the group velocity term in the dispersion relation,
where D, /27 is the FSR of the microresonator at the pumped
mode.

The eigenvalues of £ in Eq. (4) determine the stability of
the initial soliton solution about which we perturb. If any of
the eigenvalues are positive, the system is unstable; therefore,
we check that all the eigenvalues are negative except for
one eigenvalue that is fixed at the origin due to translational
symmetry. From here, we systematically move through the
o — F parameter space checking for stable solutions, which
allows us to map out a region where stable solutions exist.
As we vary « and F, the soliton solution eventually becomes
unstable via a bifurcation that changes the solution; different
bifurcation types lead to different outcomes. The outcome can
be a new stationary solution, a breather, or some other type of
evolving solution. More details on this process can be found
in Ref. [39].

In our boundary tracking simulations, we estimated the
parameters B, a, and b from stationary soliton solutions that
we obtained through evolutionary simulations. To do so, we
fixed the normalized detuning o = 10.04, which corresponds
to the experimental detuning § = 1.5 MHz for the spectrum
in Fig. 2(a). We then varied 8, a, and b to find the simulated
soliton spectrum that matches the spectrum in Fig. 2(a) most
closely. The resulting values were 8 = —0.007, a = —10,
and b = —25.3. Figure 5(a) shows the experimental spectrum
from Fig. 2(a) with the corresponding simulated spectrum
with the chosen normalized parameters.

Figure 5(b) shows results with (¢ = —10) and without
(a=0) an avoided mode crossing for b= —25.3. The
avoided crossing shifts the stable region toward higher pump
detunings and powers. Additionally, a “bump” forms on the
upper stability boundary near @ = 6.5. After this bump forms,
a soliton-breather-soliton pattern can occur, as illustrated by
the dashed black box in Fig. 5(b). In Figure 5(c) we show the
different types of bifurcations and the corresponding solutions
that occur as the stability boundary is crossed. In the dip
after the bump on the upper boundary, solitons are unstable
and breathers form. Moving from the dip back into the stable
soliton region will result in the soliton reforming. Hence, as
long as the chaotic region at lower detuning values is avoided,
a soliton-breather-soliton pattern will appear in the a-F space
as a solution trajectory enters, leaves, and then reenters the sta-
ble region via the top boundary of the stable region. We note
that this pattern exists when 4.5 < F < 4.8. When F < 4.5,
we observe only a single soliton when increasing « after the
system leaves the chaotic region. This result is consistent with
our experimental observations.
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IV. OVERLAID EXPERIMENTAL AND SIMULATION
RESULTS FOR SINGLE SOLITONS AND BREATHERS

In Fig. 6 we overlay the experimental and simulated single
soliton and intermode breather regions of existence. Figure 6
combines Fig. 4 and Fig. 5(b) by converting F and « (nor-
malized power and detuning) to the experimental parameters
Py, and & (pump power and detuning frequency, Fig. 4).
These experimental parameters represent the power coupled
into the coupling mechanism for the MgF, resonator (Py,)
and the effective detuning of the pump laser from the pumped
resonance (§). The conversions were done as follows.

To convert from « to §, we use the normalizations in
Ref. [41], which yields § = Q — wy, where Q is the pump’s
angular frequency and wy is the pumped resonance’s angular
frequency. From there, we find o« = 25/ Awy, where Awy =
@0/ Qload and Qyoaq 1s the loaded microresonator cavity Q.

To convert from F to Pyg, we use the threshold power in
the waveguide for the modulational instability (MI), Py. In
the normalized LLE given in Eq. (1), the normalized power
F is defined such that F? = 1 is the threshold for MI [16], so

that
2
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FIG. 6. Experimental vs simulation results for single solitons and
breathers. The shaded area inside the simulation boundary is where
single solitons are stable.

which implies Py, = Py F?. We calculate Py, from the thresh-
old formula in Ref. [42]:

_ woAefr
4nn2D1 Ql20ad '

Table I presents the parameters that we used for our cal-
culations. We experimentally measured the values of Qjq.q by
making a transmission scan, and we calculated Qex; and Qi
using the formula in Ref. [43]. We calculated Ag using Aegr =
Vett /L, where Ve is the effective mode volume, L = 27R is
the microresonator optical path, and R is the microresonator
radius. The values of V. and R were provided by OEWaves,
the vendor of the MgF, microresonator that we used in our
experiments. Using these values, we calculated Py gim = 9.8
mW. This value is in good agreement with our experimental
MI threshold of Py exp & 10 mW.

From Fig. 6 we observe that although the calculated stabil-
ity region is qualitatively accurate, there is some quantitative
disagreement, and our computation only covers half the mea-
sured detuning range. However, given the simplified model
of the avoided crossing that we are using in which it has
an infinite slope and does not transfer energy to the second
transverse mode family as does the model of [34], this model
does reasonably well. This model greatly reduces the compu-
tational complexity required to simulate the system by only
considering one set of longitudinal modes. This simplicity
allows for the singularity model to be used in a wider vari-
ety of simulations without adding prohibitive run time costs.

®)

th

TABLE 1. Parameters used for the simulations. Parameter values
with the source labeled as “This experiment” were either laser pa-
rameters (wo) measured during the experiment (D, Q) or calculated

).

Parameter name Value Source

n 0.1395 This experiment
o 1.215 x 10% rad/s This experiment
At 3.2 x 10710 m? From OEWaves
ny 0.9 x 1072 m?/W Material data
D, /2n 27 x 9.9136 x 10° rad/s This experiment
Qload 6.47 x 108 This experiment
Oext 6.90 x 10° This experiment
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This advantage was especially important for this study, which
considered large values of « that required keeping a large
number of discretized points in the azimuthal domain to accu-
rately resolve the soliton solutions. Additionally, this model
demonstrates that it is not necessary to invoke an energy
transfer between transverse modes to explain the experimental
observation of the soliton-breather-soliton transition.

V. CONCLUSION

In summary, we have experimentally explored single soli-
ton and intermode breather soliton dynamics in a magnesium
fluoride microresonator. We have investigated these regimes
in the pump power—detuning («-F') parameter space. We have
identified a region in this space where an intermode breather
soliton exists. With an input pump power above the soliton
threshold, we find that as we change the detuning, we either
obtain a single soliton or a continuous wave. However, at a
higher input power, we enter a regime where as we detune,
we first obtain a single soliton, then a soliton breather, and
then a single soliton once again. To better understand our
experimental results, we have numerically studied the stabil-
ity of single solitons in the detuning—pump power parameter
space by using a modified Lugiato-Lefever equation with an
avoided mode crossing, where the avoided mode crossing only
modifies the dispersion of the single transverse mode family
that is being kept in our numerical model. The numerical
results agree reasonably well with our experimental observa-
tions and show that the soliton-breather-soliton pattern can be

induced by the presence of an avoided mode crossing while
only considering one set of longitudinal modes.
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