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Synchronization of oscillators is ubiquitous in nature. Often, the synchronized oscillators couple
directly, yet in some cases synchronization can arise from their parametric interactions. Here, we
theoretically predict and experimentally demonstrate the parametric synchronization of a dissipative Kerr
soliton frequency comb. We specifically show that the parametric interaction between the soliton and two
auxiliary lasers permits the entrainment of the frequency comb repetition rate. Besides representing the first
prediction and demonstration of parametric synchronization of soliton frequency combs, our scheme offers
significant flexibility for all-optical metrological-scale stabilization of the comb.
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Introduction—Synchronization is ubiquitous in nature,
from coupled pendulums [1] to fireflies [2], neurons [3],
and quantum systems [4,5]. Despite their drastic
differences, these systems’ synchronization dynamics typ-
ically follow common universal patterns and are, to first
order, governed by the same mathematical equations. In
optics, the same is true for dissipative Kerr solitons (DKSs),
which are cornerstones for the creation of on-chip fre-
quency combs [6]. Synchronization between DKSs has
been demonstrated, for instance, between counterpropaga-
tive solitons [7], or solitons existing in remote resonators
[8]. Recently, It has also been shown that a DKS can
synchronize to an external continuous-wave reference
optical field [9,10], following the same Adler model as
coupled oscillators [9,11]. In this Kerr-induced synchro-
nization (KIS) regime, the phase locking of the DKS results
in the capture of one comb tooth by the reference field
[9,12]. Since the main pump creating the DKS is also a
comb tooth, KIS provides a passive dual pinning of the
DKS frequency comb, enabling low-noise operation of
the microcomb below the fundamental limit imposed by
the resonator thermorefractive noise [13], which is critical
for metrology applications such as timekeeping [14], time
transfer [15], ranging [16], or spectroscopy [17,18].
Although KIS can occur at any comb tooth [10], efficient
synchronization requires that the reference laser is both
close to a comb line and on resonance, which is challenging
to achieve simultaneously due to dispersion, particularly for
large frequency separations between the main and reference
pumps, which is desirable for optical frequency division
(OFD) and clockworks [9].

In this work, we leverage a Kerr parametric interaction
driven by two reference lasers to obtain a new DKS
synchronization regime that bypasses the above limitation.
Related parametric processes have recently attracted signifi-
cant attention, e.g., for all-optical random number generation
[19] and optical spin glasses [20], or for obtaining a new type
of parametrically driven dissipative soliton [21]. However,
this type of parametric interaction has yet to be explored in
the context of DKS synchronization. We show for the first
time that the interaction between two on-resonance auxiliary
lasers, outside of the DKS comb frequency grid, along with
the DKS comb itself, can yield a parametric driving force for
the soliton that mediates synchronization. We theoretically
unveil the conditions for efficiently obtaining this “para-
metric KIS,” finding that the resonator must exhibit at least
third-order dispersion to support a zero crossing of the
integrated dispersion. Experimentally, we demonstrate this
effect using an octave-spanning comb in a Si3N4 microring
resonator. Similar to standard KIS [9], parametric KIS
stabilizes the microcomb, such that its repetition rate
becomes dependent on the three lasers at play.
Results—First, we present the theoretical framework of

the novel parametric-KIS scheme. The system consists of a
microring resonator that is triply pumped [Fig. 1(a)]. The
intracavity field aðθ; tÞ can be modeled using a modified
Lugiato-Lefever equation (mLLE) [22]:

∂aðθ; tÞ
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where θ is the azimuthal coordinate that rotates with the
DKS angular group velocity, t is time, μ is the mode
difference with respect to the mode of the primary pump,
and Aðμ; tÞ is the Fourier transform of aðθ; tÞ. The
parameters κ, Δω0 ¼ ωresð0Þ − ω0, and γ denote the total
loss rate, the offset between the primary pump ω0 and the
primary pump resonance ωresð0Þ, and the Kerr coefficient,
respectively. The parameter F0 is related to the primary
pump power P0 ¼ F2

0=κext, where κext is the coupling
loss rate. We similarly define F� via the relations
P� ¼ F2

�=κext. The modified integrated dispersion, which
we define with the DKS repetition rate outside of synchro-

nization ωð0Þ
rep instead of the angular free spectral range

around the pump resonance D1, is DintðμÞ¼ωresðμÞ−
ðωresð0Þþμωð0Þ

repÞ¼ðD1−ωð0Þ
repÞμþ

P
k>1Dkμ

k=k!, where
ωresðμÞ is the frequency of resonance at mode μ, and Dk
the higher order dispersion terms. The two auxiliary pumps

are at frequencies ω� and are located at modes μ� with
respect to the primary pump, such that μ− < 0 and μþ > 0.
These pumps are offset from their nearest comb tooth

by ϖ� ¼ ω� − ω0 − μωð0Þ
rep.

In the regime of interest to us here, the integrated
dispersion is sufficiently small for a three-component
multicolor soliton (McS) to form [23,24]. The McS consists
of the DKS and two azimuthally localized structures with
carrier frequencies ω� that are locked to each other in
group (but not phase) velocity, leading to different accu-
mulated phase shifts at each round trip. In the frequency
domain, the McS is associated with three interleaved
frequency combs that share the same repetition rate ωrep

but are offset from one another, with ϖ� representing the
offset of the combs around the auxiliary pump frequencies
from the DKS comb [Fig. 1(b)]. Standard KIS is achieved
by tuning ϖþ or ϖ− to be small, such that the correspond-
ing pump captures a comb tooth, at which point the colors
generated by the two pumps become indistinguishable [9].
In stark contrast, in the parametric-KIS regime explored in
this work, the parameters ϖ� are generally large such that
standard KIS does not occur. In this case, and similar to
Ref. [24], the total intracavity field can be expanded as a
superposition of the three colors, viz.

aðθ; tÞ ¼ a0ðθ; tÞ þ a−ðθ; tÞeðiϖ−tþμ−θÞ

þ aþðθ; tÞeiðϖþtþμþθÞ: ð2Þ

After some algebra detailed in Supplemental Material,
S.1 [25], Eqs. (1) and (2) lead to the DKS equation:

∂a0ðθ; tÞ
∂t
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−
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− iγð2ja−j2 þ ja0j2 þ 2jaþj2Þa0
− i2γa�0aþa−e

iðWtþMθÞ þ iF0; ð3Þ

where W ¼ ϖ− þϖþ is the frequency offset of the idler
wave that is generated via the parametric interaction from
its closest DKS comb line at mode M ¼ μ− þ μþ.
Equation (3) is similar to the master equation of the
χð3Þ-mediated parametric soliton [21], except with an
additional direct driving force F0; Eq. (3) is also similar
to the equation used to study standard KIS of DKSs [9], but
now with a parametric synchronization term 2γa�0aþa−
from the four-wave mixing between the reference fields a�
and the soliton a0, which concomitantly generates an idler
field at ωþ þ ω− − ω0.
Hence, we may anticipate that the DKS in the triply

driven scheme shown in Fig. 1(a) can experience synchro-
nization, provided that the parametric driving term is
sufficiently close in phase with the DKS. Indeed, a detailed
analysis shows that, similar to any other synchronization
mechanism for coupled oscillators, parametric KIS obeys

(a)

(b)

FIG. 1. (a) Schematic of the parametric-KIS system. A main
pump F0 generates a DKS a0. Two additional drives F� at mode
indices μ� and relative frequency offset ϖ� from their nearest
DKS comb tooth are injected into the same resonator to create the
two other colors a− and aþ. The parametric interaction between
the three colors a0, a−, and aþ creates a parametric drive for a0,
which when in phase with the DKS can synchronize it. Thus, it
disciplines the pulse train repetition rate. (b) Spectral represen-
tation of the same system as in (a) where each comb component is
frequency offset by ϖ� respectively, highlighting how the
parametric drive at M ¼ μ− þ μþ provides the optical frequency
division factor.
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an Adler equation (see Supplemental Material, S.2 [25]),
where W is compensated by a temporal phase-slip of the
DKS to achieve phase locking. The analysis (detailed in the
Supplemental Material, S.1 [25]) leading to Eq. (3) also
shows that, when parametrically synchronized, the comb
exhibits the OFD factor M ¼ μ− þ μþ which, contrary to
direct KIS, arises from the nonlinear interaction between
the three colors. Therefore, parametric KIS enables for a
triple pinning of the repetition rate from degenerated four-
wave mixing, in contrast with the direct-KIS dual pinning:

ωðpkisÞ
rep ¼ ω− þ ωþ − 2ω0

M
: ð4Þ

Although off-resonance operation of the auxiliary
pumps (as in direct KIS [10]) is possible, the efficiency
of parametric KIS is optimized when the pumps are on
resonance to maximize their respective intracavity powers,
while allowing for jWj to be minimized. Such a condition
exists if Dintðμ−Þ ≈ −DintðμþÞ. Thus, to achieve on-
resonance parametric-KIS operation, the resonator should
have at least one zero crossing in its integrated dispersion
DintðμÞ, and therefore should exhibit at least a non-
negligible D3 term.
We demonstrate parametric KIS numerically by solving

Eq. (3) along with the equation describing a− and aþ (see
Supplemental Material, S.1 [25]), using an integrated
dispersion described by a cubic function with D2=2π ¼
21 MHz and D3=2π ¼ 1.25 MHz, and assuming D1=2π ¼
983.346 GHz. The DKS with ωrep=2π ¼ 983.515 GHz,
different from D1 because of dispersive wave (DW) recoil
[26], is generated by a main pump with power P0 ¼
150 mW and detuning Δω0=2π ¼ −3.2 GHz in a system
where κext ¼ κ=2 ¼ 2π × 200 MHz for critical coupling
condition. The modified integrated dispersion presents a
zero crossing at μ ¼ −53 [Fig. 2(a)], where a0 exhibits the
creation of a dispersive wave. We choose the auxiliary
pumps, with power P− ¼ 1 mW and Pþ ¼ 3 mW, respec-
tively, at μ− ¼ −57 and μþ ¼ 25 for the components a−
and aþ to exhibit, while on resonance, relative offsets that
are almost equal with opposite signs −ϖ−=2π ≈ϖþ=2π ≈
10 GHz. By fine tuning the frequency detunings δω� of
the auxiliary pumps, the frequency offset W between the
parametrically generated idler field and a DKS comb tooth
can be pushed to lie within the parametric-KIS bandwidth
(i.e., ≲1 GHz). Additionally, the colors a− and aþ, which
are not phase synchronized with a0, experience the creation
of additional azimuthal tones, regardless of their dispersion
regime, thanks to the group-velocity binding of all the
colors through cross-phase modulation (XPM) [27–29].
The parametric driving force that synchronizes the DKS
and which results from the three colors can be numerically
extracted, exhibiting a clear tone atM ¼ μ− þ μþ ¼ −32 at
the a0 color, i.e., jWj ≪ jϖ�j, as expected by the theory.
The azimuthal profile of a0 with respect to time allows us to

understand the synchronization mechanism [Fig. 2(c)].
Outside of synchronization, the parametric term exhibits
a phase slip Wt ðmod 2πÞ from the DKS, resulting in a
nonstationary interference pattern, equivalent to a CEO
offset in the frequency domain. Once the parametric KIS is
reached and synchronization is achieved, the a�0a−aþ
driving term becomes in phase with the DKS, hence the
absence of modulation of the azimuthal profile in time.
While synchronized, a change in frequency of either

auxiliary pump leads to a phase change of the synchronized

(a)

(b)

(c)

(d) (e)

FIG. 2. (a) Modified integrated dispersion DintðμÞ of the
resonator used in the simulation. (b) Simulated comb spectrum
for the three colors at play: the DKS’ a0 (gray) and both
auxiliaries’ a� with μ− ¼ −57 (red) and μþ ¼ 25 (blue). The
resulting parametric driving field for the DKS’ color a0 is then at
M ¼ μ− þ μþ ¼ −32 (green). (c) Azimuthal profile (left, color
scale) of the DKS color with respect to the negative auxiliary
pump detuning δω− (right). Outside of KIS, the parametric drive
has an offset leading to a phase slip in time relative to the DKS,
resulting in a CEO offset in the frequency domain. Once
synchronized, their phase velocities lock and the variation of
W entrains the DKS’s and hence disciplines its repetition rate,
as apparent through its azimuthal drift. (d),(e) Repetition rate
variation δωrep of the DKS with respect to the detuning of the
negative (d) and positive (e) auxiliary pump detuning δω− and
δωþ, respectively. Once the parametric KIS is reached, δωrep

varies with the OFD M ¼ μ− þ μ−, accordingly with Eq. (4).
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DKS, causing a drift in its position in time and thus its
repetition rate. However, none of the auxiliary pumps
directly capture any comb teeth, which is in stark contrast
with direct KIS [9] or other color KIS [29] schemes. We can
extract the repetition rate change δωrep of a0, which through
XPM is the same as a�, and study its entrainment with the
auxiliary pumps’ frequency change δω�. As expected from

Eq. (4) in the parametric-KIS regime, we obtain
δωrep=δω− ¼ δωrep=δωþ ¼ 1=M [Figs. 2(d) and 2(e)].
We also confirm such results with different μ� combina-
tions (see Supplemental Material, S.6 [25]), where unlike
direct KIS, which allows efficient resonant operation only
at the DW, parametric KIS allows it at any μ� pairs where
Dintðμ−Þ ¼ −DintðμþÞ. In this context, parametric KIS

(a)

(b)

(c) (d)

(e)

FIG. 3. (a) Integrated dispersion measurement (open circles) and simulation (solid line) for the microring resonator under study.
(b) Frequency comb optical spectra in parametric KIS for different OFD factors, from top to bottom, M ¼ −67;−61, and −51. The left
inset highlights the frequency offset ϖ− between the components a− and a0. The soliton color a0 is displayed in gray and remains the
same for each μ� configuration (gray envelope). The right inset shows a microscope image of the microring and its critical dimensions.
(c) Repetition rate disciplining for (i) M ¼ −67, (ii) −61, and (iii) −51, where δω− (left), δωþ (center), and δω0 (right) is swept. In the
case of δω0 sweep, we account for a factor 2 in the detuning due to the parametric nature of the process [see Eq. (4)]. Only a small
excursion within the parametric KIS is shown for the main pump to avoid disrupting the DKS. (d) Electrical spectra of the repetition rate
beat when the DKS is free running (pink) and parametrically synchronized (blue). RBW: resolution bandwidth; VBW: video bandwidth.
The power is normalized to 1 mW, equivalent to decibel-milliwatts. (e) Phase noise of the repetition rate (blue thick) in the parametric-
KIS regime, with the different noise contributions of each pump according to Eq. (4) displayed, highlighting the repetition rate optical
frequency divided from the pump noises. The EOcomb apparatus (dash line) defines the noise floor of the repetition rate measurement.
The power is normalized to the carrier’s, equivalent to dBc/Hz.
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enables more efficient synchronization at the off-resonance
comb tooth M than direct KIS with comparable reference
powers (see Supplemental Material, S.8 [25]). This occurs
due to the near-resonant input fields driving an efficient
nondegenerate four-wave mixing process that produces
large intracavity power at an (off-resonant) idler frequency
to capture that M th comb tooth.
We now proceed to demonstrate parametric KIS exper-

imentally. We use an integrated microring resonator with a
radius of R ¼ 23 μm, made of H ¼ 670 nm thick Si3N4,
and a ring width of RW ¼ 860 nm embedded in SiO2. The
bus waveguide is configured in a pulley fashion with a
length Lc ¼ 18 μm, compensating for the coupling
dispersion [30] and allowing for efficient extraction of
the entire comb. We pump the microring at a frequency
ω0=2π ≈ 281.3 THz with an on-chip power P0 ¼ 180 mW
to generate an octave-spanning soliton microcomb at
ωrep=2π ¼ 999.603 76 GHz (�10 kHz), while using a
cooler laser at ≈308 THz to thermally stabilize the system
[31,32]. The comb exhibits two DWs [Fig. 3(b)] at
μ ¼ −90 (191.3 THz) and μ ¼ 108 (389 THz), due to
the two zero crossings of DintðμÞ [Fig. 3(a)]. As described
earlier, zero crossings lead to resonant modes μ� that when
pumped by auxiliary lasers, create colors a� with opposite
phases ϖþ ≈ −ϖ−. Such mode combinations can be found
under dual pumping, where the a− color creates through
nonlinear mixing a third color for which phase matching
will be at μþ (and vice versa) [23,24]. In our experiment,
such conditions, along with equipment compatibility, are
met at fμ−; μþg ¼ f−92; 25g, f−93; 32g, and f−94; 43g,
resulting in an OFD ofM ¼ −67, −61, and −51 [Fig. 3(b)].
For all the experiments, the on-chip powers of the auxiliary
pumps are set to P− ¼ 1.25 mW and Pþ ¼ 2.75 mW. We
record the DKS repetition rate using an electro-optic comb
apparatus similar to Refs. [9,29,33] (see Supplemental
Material, S.5 [25]). The parametric KIS is detected by
recording the temporal trace of the EO-comb frequency
down-converted ωrep while only one of the pump laser
frequencies is swept. Once processed (see Supplemental
Material, S.5 [25]), this enables us to retrieve the depend-
ence of ωrep on the laser detuning [Fig. 3(c)].
We confirm the parametric nature of such Kerr-induced

synchronization since we obtain the ωrep entrainment,
similar to the simulation, for δωrep=δω− ¼ δωrep=δωþ ¼
1=M for each of the μ� pairs under study. We note the
difference in parametric KIS bandwidth from the μ�
auxiliary pumps, which we believe arises from the remain-
ing κext dispersion, impacting the F− and Fþ driving forces.
A unique feature of the parametric KIS, deduced from
Eq. (4), is the double contribution from the main pump.
While in parametric KIS, we change the main pump
frequency by δω0—different from Δω0 since the
cooler pump thermally stabilizes the detuning from the
resonance—and we observe a disciplining δωrep=δω0 ¼
−2=M, as expected from the theory.

Finally, we characterize the parametrically synchronized
DKS noise. Like direct KIS, the pinned repetition rate
shows significantly reduced noise compared to the
untrapped case [Fig. 3(d)]. Measurements of the repetition
rate phase noise power spectral density (PSD) verify the
parametric-KIS OFD. Using an optical frequency discrimi-
nator (see Supplemental Material, S.5 [25]), we find the
repetition rate phase noise PSD matches the combined
contribution of the three free-running lasers’ phase noise
PSD according to Eq. (4) [Fig. 3(e)], where the repetition
rate detection is limited only by the EOcomb apparatus
noise floor used for spectrally translating two DKS comb
teeth into a detectable frequency. Since our OFD is
competitive with state-of-the-art two-point locked micro-
combs for low-noise microwave generation [34–36], we
expect similar performances when the three lasers would be
locked to frequency references.
Discussion—In conclusion, we have demonstrated that

harnessing the χð3Þ nonlinearity of a microresonator hous-
ing a dissipative Kerr soliton enables parametric Kerr-
induced synchronization using two auxiliary lasers injected
outside the soliton microcomb’s frequency grid. As a result,
the soliton is trapped in the field that is generated by the
parametric interaction of different colors in the cavity.
We have shown that this effect can be predicted by the
multicolor formalism of the LLE, where the parametric
interaction between the different waves gives rise to an
additional force to the soliton color. We have numerically
and experimentally demonstrated this effect, stabilizing the
microcomb with auxiliary lasers outside the DKS micro-
comb’s frequency grid. Additionally, other colors beyond
the DKS can undergo parametric synchronization with
suitable auxiliary pumping (see Supplemental Material,
S.7 [25]). Leveraging the group velocity binding for DKS
stabilization through dual pinning of another color [29],
this scheme offers enhanced flexibility for all-optical
locking while relaxing the dispersion requirements for
on-resonance operation compatible with pure quadratic
Dint. Our work presents the first prediction and demon-
stration of parametric synchronization of a DKS micro-
comb, opening new pathways for studying and applying the
trapping of DKSs without direct actuation. It is important to
note that parametric driving of solitons is not limited to χð3Þ
systems [37,38]. Thus, the parametric KIS of a DKS could
be extended to other nonlinear orders, with potentially
significant implications for the dual-pinning and noise of
the frequency comb. Additionally, our work presents the
potential for using multicolor solitons in metrology, har-
nessing their spectral extension [23] beyond the resonator’s
anomalous dispersion limit.
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