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In recent years, the photonics community has shown increasing interest in the inverse design of photonic compo-
nents and devices using the adjoint method (AM) due to its efficient gradient computation and suitability for large
parameter and continuous design spaces. This work focuses on substrate optimization to maximize light transmis-
sion or field enhancement at specific locations using layered medium Green’s functions (LMGFs). We first provide
a numerical formulation for calculating two-dimensional (2D) LMGFs, leveraging their efficiency for fixed sources
and observation points parallel to layer interfaces. We then present a step-by-step implementation of the AM for
substrate optimization using LMGFs. Through numerical studies, we verify the field enhancement achieved with
AM-designed substrates using a frequency-domain solver. We compare the results of AM with particle swarm opti-
mization (PSO) for two optimization problems, demonstrating that AM not only generates realistic designs with
smooth permittivity profiles but also achieves inverse design more efficiently than PSO. The AM designs are easier
to fabricate and require significantly less computational effort due to the efficient gradient computation inher-
ent in the method. This study underscores the advantages of AM in designing photonic devices with continuous
parameter spaces. © 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence

(AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

In the last decade, there has been growing interest in the photon-
ics community in the inverse design of photonic components
and devices using the adjoint method (AM) [1–13]. This choice
has several advantages over other modern numerical optimiza-
tion techniques, such as particle swarm optimization (PSO)
[10,14–16] and the genetic algorithm (GA) [10,14,17]. First,
AM provides efficient computation of gradients with respect to
design parameters with a computational cost that is independ-
ent of the number of design parameters. This unique property
of AM is particularly advantageous in optimization problems
where the number of design parameters is large. Second, AM
is well suited for problems with continuous design spaces,
where the design parameters can take on any real value within
user-determined limits. GA and PSO, on the other hand, face
challenges in handling continuous design spaces, especially if
the number of parameters to be optimized is large, e.g., as the
number of parameters increases in a PSO implementation,
the search space expands exponentially, making it harder for
the swarm to explore effectively and find optimal solutions. This
leads to sparse sampling and slower convergence since parti-
cles take longer to locate promising regions. Additionally, the
risk of premature convergence to sub-optimal solutions rises,
complicating the optimization process. The fitness landscape in

high-dimensional spaces is more complex, with numerous local
optima and steep gradients, making navigation through this
space and global optimization difficult.

Substrate optimization for maximizing the transmission of
light through the substrate or maximizing the field at a specific
location at a desired wavelength or wavelength range typically
involves designing the properties of the substrate material,
such as the permittivity and thickness [11–13,18–26]. It is
known that stacks of thin films with varying refractive indices
and coatings with a gradually changing refractive index can
reduce reflections, and AM has already been utilized to design
substrates [11,12]. In those studies [11,12], researchers have
used either the frequency-domain finite differences (FDFD),
time-domain finite differences (FDTD), or the transfer-matrix
method. Here, we achieve the same goal using layered medium
Green’s functions (LMGFs).

For a multi-layered planar geometry, LMGFs give us the
electric and magnetic fields created by electrical or magnetic
dipoles or line sources placed at any location in that multi-
layered geometry [27–30]. As discussed later, the LMGF
formulation requires less computation time for the solution
if the computation makes use of the following fact: for a fixed
source, if the coordinates of observation points change parallel
to the layer interfaces, then one needs to calculate the spectral
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domain LMGFs only once, and their spatial counterparts can be
computed via adaptive integration all at once.

The outline of this paper is as follows. We first provide a
complete formulation to calculate the two-dimensional (2D)
LMGFs numerically. Then we provide a step-by-step recipe
to implement an adjoint method for substrate optimization
using LMGFs. In the numerical results section, we verify the
field enhancement that is achieved with substrates that are
designed with the adjoint method using a frequency-domain
finite-differences (FDFD) solver for two different optimization
problems and conclude.

2. EVALUATION OF 2D LMGFs

Previously, we followed the formulation developed by Chew
[27] to calculate the LMGFs for line [28] and dipole [29]
sources. Both studies reduced computation time by subtracting
the singularities from the spectral domain LMGFs and adding
their contributions to the spatial domain using some Bessel and
Hankel function formulae. Here, we follow the recursive formu-
lation developed initially for anisotropic medium LMGFs [30]
as follows.

Figure 1 illustrates a medium with N + 1 layers aligned
parallel to the x -axis, where each layer is defined with its
electrical permittivity (ε` = ε0εr ,`), magnetic permeability
(µ` =µ0µr ,`), thickness (h`) for `= 0, 1, · · · , N, and
h0 = h N+1 =∞, and ε0 and µ0 are the electrical permittivity
and magnetic permeability of vacuum. The infinitely long
source parallel to the y -axis is located at (x ′, z′) in layer m. The
wavenumber in layer ` is k2

` =ω
2ε`µ`, where ω= 2π f and f

is the frequency of the electromagnetic waves created by the line
source.

The electric field at the observation point (x , z), which can be
chosen in any layer, can be determined by evaluating the follow-
ing Sommerfeld integral:

E y (x , z|x ′, z′)=
1

4πk`

∫
∞

0

{
G̃(x , z|x ′, z′)

cos(kx |x − x ′|)
kz

}
dkx ,

(1)

Fig. 1. Schematic illustration of a multilayered medium with
N + 1 layers and N interfaces parallel to x -axis. The thickness of layer
` is h`. The relative electrical permittivity and magnetic permeability
of the material used in layer ` are εr ,` andµr ,`, respectively.

where G̃(x , z|x ′, z′) is the spectral domain LMGF that can be
calculated with

G̃(x , z|x ′, z′)=8`e u`(z−zl ) +9`e−u`(z−zl−1), (2)

where 8` and 9` are unknowns that need to be determined
according to continuity conditions of the electric and mag-
netic fields at the interfaces, kx is the integration variable,
k2

z,` + k2
x = k2

` , and u` = j kz,`. When the source is in the bot-
tom layer (m = 0), then90 = 0, and similarly, when the source
is in the top layer (m = N + 1), then 8N+1 = 0. By imposing
the boundary conditions for electric and magnetic fields, we
can create a linear equation to determine all these coefficients,
i.e., AX= S, where A ∈C 2N×2N , X ∈C 2N , and X ∈ S2N .
The non-zero elements of A are provided in Appendix A. To
construct the vector X, we set

x1 =80, x2n =9N,

x2i =8i , x2i+1 =9i ,
(3)

for i = 1, . . . , N − 1.
To construct the vector S, we set

S2 j−1 =
e−u j |z j−1−z′|

u j
, S2 j =

e−u j |z j−1−z′|

ε j
,

S2 j+1 =−
e−u j |z j−z′|

u j
, S2 j+2 =

e−u j |z j−z′|

ε j
.

(4)

If in Eq. (4), the source is in the bottom layer, i.e., m = 0; we
then set S2m−1 = 0 and S2m = 0. Similarly, if the source is in
the top layer m = n, we then set S2m+1 = 0 and S2m+2 = 0.
After determining the unknown coefficients, we numerically
compute Eq. (1) using a 32-point Gauss-Legendre quadrature.
It is essential to note that when the source location is fixed and
observation points have the same z coordinate but different
x values, we must calculate the spectral domain LMGFs only
once. Hence, evaluating Eq. (1) for nd observations on an axis
parallel to x̂ , we calculate all the LMGFs in a single run, reduc-
ing the computation time by almost nd times compared to
evaluating them one by one.

3. IMPLEMENTATION OF ADJOINT METHOD
WITH LMGFs

We start with the following simple example to describe how the
adjoint method can be implemented with 2D LMGFs. Assume
that we have a 2λ thick substrate between z=−2λ and z= 0.
A line source is at (x ′ = 0, z′ =−2.5λ), half wavelength below
the substrate. Our goal is to design a substrate that would yield
the highest electric field at (xt = 0, zt = 0.5λ), half wavelength
above the substrate. For the sake of simplicity, let us assume that
the substrate consists of 10 layers with the same layer thickness
(λ/5), as shown in Fig. 2(a). Assuming all the materials are
non-magnetic, we aim to determine each layer’s permittivity
using the AM.

As explained in [2–9,11], the AM requires only two computa-
tions to calculate the gradients with respect to the design param-
eters. For this problem, we choose our cost function (ϑ) in order
to maximize the electric field intensity (|E |2) at the target loca-
tion (xt , zt ) and use the following equation to calculate the gra-
dient:
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Fig. 2. Schematic illustrations of (a) target, (b) forward, and
(c) backward field calculations where small circles and crosses represent
field and source points, respectively.

∂ϑ

∂εr ,`
=−2k2

0

∑
d

Re
{

E forw
` · E adj

`

}
, (5)

where E forw
` is the electric field created by the original line source

and calculated at d observation points located in layer ` as

shown in Fig. 2(b) and E adj
` is the adjoint field calculated at the

same observation points due to an adjoint source located at the
target position as shown in Fig. 2(c). Analogically, if E forw

` is
the value that we obtain with Eq. (1) when there is a line source

at (x ′, z′) carrying 1 A of current, then the E adj
` is the value

we obtain from the same equation for a line source at (xt , zt)

carrying a complex current of 2 j E ∗(xt , y t |x ′, z′)/ω A, where
E ∗ is the complex conjugate of E . In other words, our adjoint
field at an observation point (xd , yd ) is

E adj
=

2 j
ω

E ∗(xt , zt |x ′, z′)E back
` (xd , zd |xt , zt), (6)

where E back
` (xd , zd |xt , zt) is the value that we obtain with

Eq. (1) when there is a line source at (xt , zt) carrying 1 A of
current.

Our iterative implementation has five steps that can be
formulated as follows.

• Step 1: calculate the electric field E (xt , y t |x ′, y ′) at the
target point where we want to enhance the electric field as shown
in Fig. 2(a).

• Step 2: calculate the electric field E forw
` (xd , zd |x ′, z′)

at observation points that cover a wide range horizontally
(e.g., −4λ≤ x ≤ 4λ) and dense enough vertically (e.g., 20
observation points per wavelength) inside each layer, as
illustrated in Fig. 2(b).

• Step 3: repeat Step 2 by changing the source location
with the target location, i.e., calculate E back

` (xd , zd |xt , zt), as
depicted in Fig. 2(c).

• Step 4: update the permittivity of each layer using Eqs. (5)
and (7):

εnew
r ,` = ε

current
r ,` + α

∂ϑ

∂εr ,`
, (7)

where α is the learning rate, εcurrent
r ,` is the relative electrical per-

mittivity of layer ` used in the current set of calculations, and
εnew

r ,` is the updated permittivity to be used in the next iteration.
• Step 5: calculate

∑
` |∂ϑ/∂εr ,`|. If it is smaller than the

desired threshold value, stop iterating. Otherwise, go back to
Step 1.

Note that using symmetry properties of LMGFs
[e.g., E y (x , z|x ′, z′)=−E y (−x , z|x ′, z′)], vectorial evalu-
ation of numerical integration, and parallel computing, the
computation time of Steps 2 and 3 can be reduced significantly.
Also, if we would like to achieve broadband optimization, then
we can update the permittivity of each layer as follows. Let us
assume we have K discrete values representing the spectrum
of interest where the intensity of the light at wavelength ζ is Iζ
for ζ = 1, 2, · · · , K . Then the permittivity of layer ` can be
computed by

εnew
r ,` = ε

current
r ,` +

α

K

K∑
ζ=1

Iζ
∂ϑζ

∂εr ,`
. (8)

4. NUMERICAL RESULTS

For all the examples presented here, the learning rate (α) is set to
0.05.

A. Permittivity Optimization

We first start with the aforementioned simple optimization
problem. Assume the wavelength of the electromagnetic waves
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Fig. 3. Real part of the electric field (E forw) for the forward calcula-
tion obtained using (a) an FDFD solver and (b) LMGFs.

Fig. 4. Solid and dashed lines show the optimized permittivity
values along the AM- and PSO-designed substrates with 10 thin layers
that lead to an 11.09% and an 11.13% enhancement, respectively.

created by the line source is 600 nm, and we are trying to deter-
mine the permittivity values of each layer of the substrate,
εr ,` for `= 1, 2, · · · , 10. The top and bottom layers are
both air (εr ,0 = εr ,11 = 1). As a design constraint, we enforce
1≤ εr ,` ≤ 4. For the first iteration of the optimization process,
we set εr ,` = 2 for all `.

To validate the accuracy of our LMGF implementation,
we calculate the electric field values along the substrate using
our LMGF formulation and an FDFD solver. For the FDFD
solution, we set the unit mesh length to 5 nm. Similarly, for
the LMGF implementation, we create a grid in each layer
with a grid step length of 5 nm (horizontally and vertically)
for −1 µm≤ x ≤ 1 µm. In Fig. 3, we plot the electric field’s
real part only for brevity. Due to the perfectly matched layers
(PMLs) on both sides of the substrates, the results obtained with
the FDFD gradually decrease in those PML regions. Apart from
those regions, the results look almost identical.

For the first AM-based substrate optimization example, we
assume the same geometry explained at the beginning of the
previous section, e.g., the substrate is 2λ thick from z=−2λ
to z= 0, the line source is at x ′ = 0 and z′ =−2.5λ, and the
substrate consists of 10 λ/5-thick layers. We continue to use
20 points per wavelength sampling density; hence there are
640 target points in each layer, i.e., four points vertically and
160 points horizontally. With the selected design constraint
and initial permittivity values, the AM implemented with the
LMGF formalism generates a design, as depicted by the blue
line in Fig. 4, which yields an 11.1% increase compared to a glass
slide with a relative permittivity of 2.25 (corresponding to the
refractive index of 1.5), which is the typical value for the per-
mittivity of optical glass substrates. We also implement another
numerical optimization method using the PSO method. Using
100 swarms and 300 iterations, the PSO recommends a similar
but slightly different design, shown with the red dashed lines in
Fig. 4, which yields an 11.13% increase compared to the glass
slide. Note that we obtain much more significant enhancements
by increasing the maximum electrical permittivity allowed from
four to a higher value, e.g., 20. However, since our primary
focus is the applicability of the AM method for one-dimensional
problems such as substrate optimization using LMGFs, we do
not discuss those cases here.

For the second set of substrate optimization studies, we
increase the number of layers within the substrate to 240 and
follow the same procedure. Since these are λ/120-thick layers,
we have 160 target points in each layer. For the initial step,
we set all the relative permittivity values to 2.0 for all 240 thin
layers. The PSO implementation uses 2400 swarms, with
the maximum number of iterations set to 1000, but the com-
putation ends nearly at the 400th iteration when the cost no
longer decreases. The designs recommended by the AM and
PSO implementations are plotted in Figs. 5(a) and 5(b). Even
though these two designs yield almost the same level of field
enhancement, 11.32% and 11.3%, respectively, the designs
recommended by these two methods have one very distinct
difference. The permittivity profile of the AM design is very
smooth, whereas the PSO design has abrupt changes. The rea-
son behind the smooth design of AM is that the permittivity
update equation, Eq. (7), is basically an averaging operation that
includes the contributions of hundreds of interactions between
forward and backward fields. From a practical point of view, the
AM design is easier to fabricate, for example, using thin films of
acrylonitrile butadiene styrene-based nanocomposites, whose
relative permittivity can be tuned to any value between two and
seven by changing the ferroelectric barium titanate nanopar-
ticle fill ratio [31]. As pointed out earlier, PSO-like numerical
optimization methods face challenges in handling continuous
design spaces when the number of parameters to be optimized is
large.

In terms of computing time and efficiency, let us make the
following comparison. In the PSO implementation, each trial
requires only one calculation of Eq. (1). Since we use 2400
swarms and 400 iterations, we compute nearly one million
LMGFs. For the AM implementation, we compute 481 sets
of LMGFs (240 forward, 240 backward, and one source-to-
target), which takes 47 iterations to converge. So, we compute
nearly 23,000 LMGFs. Due to this significant difference
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Fig. 5. Permittivity values along the (a) AM- and (b) PSO-designed substrates with 240 thin layers that lead to an 11.22% and an 11.2% enhance-
ment, respectively. (c) Electric field intensity values at z= λ/2 and−1.5λ≤ x ≤ 1.5λ, where λ= 600 nm, assuming a plain substrate with relative
permittivity of two (solid curve) and the optimized substrate (dashed curve).

between the number of LMGFs computed in the PSO and
AM implementations, the latter requires much less time to
achieve the inverse design. We can conclude that the AM not
only generates realistic designs with smooth permittivity profiles
but also achieves the inverse design more efficiently than PSO-
like numerical optimization algorithms due to calculating the
gradients based on the laws of physics.

It is well known that both the learning rate and dipole sam-
pling density affect the computation time and efficiency. For
our initial studies, the learning rate was set to 0.01, which pro-
vided robust but slightly low learning. When we set it to 0.1, we
observed oscillations in the cost value rather than a continuous
and smooth increase. We chose α = 0.05 as the optimum value
for the examples presented here to balance this trade-off between
accuracy and efficiency. In short, the learning rate in AM opti-
mization problems determines whether we can achieve our goal
and, if we can, then how fast we reach our goal. Similarly, when
we increase the dipole sampling density from λ/20 to λ/30, the
computation time for each iteration did not change due to the
recursive calculation of LMGFs. However, we did not observe
any reduction in the number of iterations during the AM opti-
mization. This verifies that the dipole sampling density of λ/20
is sufficient to grasp the oscillations in the electromagnetic
waves propagating along the multi-layered substrate. Using a
higher sampling density is neither necessary nor advantageous.
However, when we reduced the dipole sampling density from
λ/20 to λ/10, the optimization was completed in 161 itera-
tions. The one implemented with λ/5 sampling density did
not even converge. This latter case is probably because a coarser
mesh may miss the points where the electric field intensity gets
maximized, which leads to sub-optimal or inaccurate design
solutions.

Lastly, we would like to discuss the impact of the observation
point range on the efficiency and accuracy of the AM imple-
mentation. As mentioned before, we calculate the forward and
backward electric field values over a 8λ-wide range horizontally.
After including the distance between the source and the lower
interface of the substrate, we can assume an approximate dis-
tance of 5λ between the source and observation points chosen
over the substrate. Again, with a rough calculation, this means
that both forward and backward electric field intensities near

the edges of our search domain are one-fifth of the field values
calculated along the center, e.g., at x = 0. Since the adjoint field
calculation includes both terms, the effect over the permittivity
update of the dipoles near the edges is roughly 4% of those near
the center. As a result, their contribution is limited to the third
digit of the final value of the permittivity for each layer. If one
is interested in the first two digits only, then a 3λ-wide range
would suffice.

B. Thickness Optimization

In the past two decades, extensive research has focused on
monolayers of transition metal dichalcogenides, such as molyb-
denum disulfide (MoS2) and graphene, commonly called
two-dimensional (2D) materials. We utilize SiO2 coated Si
substrates with 90 nm or 270 nm thicknesses, illustrated in
Fig. 6(a), to work with these 2D materials. These specific thick-
nesses offer optimal contrast between the coated 2D material
and bare regions, facilitating the localization of materials during
experiments [32]. Our objective is to design a substrate using the
adjoint method to enhance the visibility of 2D materials further.
To achieve this objective, we redefine the design question and
constraint. Assuming we are limited to two materials, SiO2

and Si, but have the freedom to choose the number, thickness,
and order of layers, we seek the optimal design that maximizes
contrast for broadband excitation. This optimization problem
can be approached in various ways. For instance, one might aim
to maximize reflectance from the substrate or power within the
2D material. We adopt the latter approach.

It is essential to note that in this scenario, the source is broad-
band and far from the substrate, similar to the experiments
conducted on 2D-material-based photodetectors. Due to
this large distance between the light source and the target, we
assume this is a plane-wave-like excitation, not a line source.
To define broadband excitation, we assume a bell-shaped spec-
trum ranging from 400 to 750 nm, with maximum intensity
at 575 nm (normalized to one) and relative intensities of 0.4 at
450 and 700 nm. We assume the monolayer MoS2 thickness to
be 0.65 nm. The complex electrical permittivity of monolayer
MoS2 is determined using a numerical model accounting for the
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Fig. 6. Monolayer MoS2 is placed on top of (a) a simple 270 nm SiO2 coated Si substrate, (b) optimized substrate illuminated with a broadband
light source, and (c) quantum efficiency of the MoS2-based phototransistors over regular and optimized substrates assuming gate voltage of 10 V,
source-to-drain voltage of 0.5 V, and incidence power of 0.2µW.

wavelength [33]. Similarly, the electrical permittivity values of
Si [34] and SiO2 [35] are calculated as a function of wavelength.

For the AM optimization, we set the number of inner layers
(the layers between MoS2 and the Si substrate) to 1000, with
each inner layer having a thickness of 1 nm. Initially, the mate-
rial type of all the inner layers is set to SiO2. Then, during the
iterative process, if the ∂ϑ/∂εr ,` value for layer ` is larger than
the average ∂ϑ/∂εr calculated over all layers, the material of
layer ` is set to Si. If the value is lower than the average, then the
material of layer ` is set to SiO2. The inverse design is completed
in 88 iterations. The final design, which comprises four pairs of
SiO2/Si layers with different thicknesses, is shown in Fig. 6(b).

To verify the success of the substrate optimization, we first
compute the average power (E × H∗) at the center of the MoS2

film using the FDFD solver for both the current industry stand-
ard substrate shown in Fig. 6(a) and the one recommended by
the AM method as shown in Fig. 6(b). We achieve to enhance
the power absorbed by the MoS2 film across the entire spectrum,
with an average enhancement of 72%. Second, we compute the
quantum efficiency of the phototransistors made from MoS2

coated SiO2 substrates as follows.
We form a phototransistor by fabricating two metal con-

tacts on opposite sides of a monolayer MoS2 that is placed
over a back-gated SiO2/Si substrate. This device can convert
optical excitations into electrical currents, and its quantum
efficiency is defined as the ratio of the number of generated
electrons to the number of incident photons. Briefly, we solve
the drift-diffusion equations to calculate the output current of
the phototransistors numerically [36]. A detailed description of
how the drift-diffusion model is utilized to compute quantum
efficiency and other characteristic parameters of 2D material
phototransistors can be found in [37]. The quantum efficiencies
of the phototransistors made with the regular and optimized
substrates are shown in Fig. 6(c). It is observed that for the device
with a single layer of SiO2 with a thickness of 270 nm, the quan-
tum efficiency reaches 7.5% at the wavelength around 561 nm.
However, with the optimized substrate, the quantum efficiency
of 18% is achieved at the wavelength of 571 nm, corresponding
to a 141% increase in peak quantum efficiency. The average
enhancement across the entire spectrum is 210%.

Similar to this example, we can utilize the AM implemented
with LMGFs to design a substrate that maximizes the field at

specific wavelengths while minimizing it at others, accommo-
dating different types of excitations, excitation polarizations,
and incidence angles. However, implementing the AM method
with a full-wave solver would be necessary for more advanced
optimization problems, such as if we aim to enhance the fields
further based on the surface plasmon resonance of metal
nanoparticle arrays fabricated on the substrate.

5. CONCLUSION

This study demonstrates the effectiveness of the adjoint method
(AM) combined with layered medium Green’s functions
(LMGFs) for substrate optimization. Through appropriate
formulation of the optimization problem and constraints, we
harness the unique advantages of AM, which include efficient
computation of gradients and suitability for continuous design
spaces, to optimize substrate designs aimed at enhancing field
properties and transmission characteristics. Our numerical
investigations illustrate the proposed methodology’s accuracy,
efficiency, and versatility, resulting in significant improvements
in field intensity for a selected wavelength or wavelength range.
Through comparative analysis with particle swarm optimiza-
tion, we emphasize the superior computational efficiency of
AM, highlighting its role as a robust tool for photonics inverse
design.

APPENDIX A

The non-zero elements of A are as follows:

A11 =
1

u0
, A12 =−

e−u1h1

u1
, A13 =−

1

u1
, (A1)

A21 =
1

ε0
, A22 =−

e−u1h1

ε1
A23 =

1

ε1
, (A2)

A21 =
1

ε0
, A22 =−

e−u1h1

ε1
, A23 =

1

ε1
, (A3)

A2N−1,2N−2 =
1

un−1
, A2N−1,2N =−

1

un
, A2N−1,2N−1 =

e−un−1hn−1

un−1
,

(A4)
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A2N,2N−2 =
1

εn−1
, A2N,2N =

1

εn
, A2N,2N−1 =−

e−un−1hn−1

εn−1
,

(A5)

A2N,2N−2 =
1

εn−1
, A2N,2N =

1

εn
, A2N,2N−1 =−

e−un−1hn−1

εn−1
,

(A6)

A2i−1,2i−2 =
1

ui−1
, A2i−1,2i−1 =

e−ui−1hi−1

ui−1
,

A2i−1,2i =−
e−ui hi

ui
, A2i−1,2i+1 =−

1
ui
,

(A7)

A2i,2i−2 =
1

εi−1
, A2i,2i−1 =−

e−ui−1hi−1

εi−1
,

A2i,2i =−
e−ui hi
εi

, A2i,2i+1 =
1
εi
,

(A8)

where i = 2, . . . , N − 1.
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