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Avoided crossings are important in many waveguides and resonators. That is particularly the case in modern-day
solid-core and air-core optical fibers that often have a complex geometry. The study of mode coupling at avoided
crossings often leads to a complicated analysis. In this tutorial, we aim to explain the basic features of avoided
crossings in a simple slab waveguide structure so that the modes can be found analytically with simple sinusoidal
and exponential forms. We first review coupled-mode theory for the guided mode in a slab waveguide, which has
a higher index in the core. We study the effective index of the guided true mode for a five-layer slab waveguide
including two core layers with higher indices compared to the indices in the three cladding layers. Then, we study
the same structure by using the overlap between approximate modes confined in the two individual core slabs.
When the two individual core slabs are not near each other, the avoided crossing using the true modes within the
two-slab waveguide agrees well with the results using the overlap between the two approximate modes. We also
study coupled-mode theory and avoided crossings for leaky modes in an antiresonant slab waveguide. We obtain
good agreement between the results using the true leaky mode and the results using the overlap between approxi-
mate modes. We then discuss examples of avoided crossings in solid-core and air-core optical fibers. We describe
the similarities and differences between the optical fibers and simple slab waveguides that we have analyzed in
detail. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.435828

1. INTRODUCTION

Avoided crossings between modes appear in many optical
waveguides and resonators. They often occur between modes
in a single waveguide or resonator, or due to coupling between
modes in different waveguides or resonators that are in close
proximity. The study of mode coupling in hollow-core fibers
often leads to a complicated analysis, because the modes experi-
encing avoided crossings in hollow-core fibers are leaky modes
[1], which require a computational solution due to the complex
structures. Leaky modes and avoided crossings have long been
studied in optical systems. While the theory of avoided crossing
is well understood in the case of guided modes in optical wave-
guides, there has been little or no study of avoided crossings in
optical waveguides that have leaky modes and whose structures
are sufficiently simple for the modes to be derived analytically.
In this tutorial, we focus on one-dimensional slab waveguides to
study the avoided crossings for leaky modes in a simple context.
The formulation of coupled-mode analysis has been presented
in [2]. This formulation of coupled-mode theory applies to

guided modes, and it cannot be directly applied to leaky modes.
We describe here the revision of coupled-mode equations that
is necessary to describe leaky modes in one-dimensional slab
waveguides.

Optical waveguides can be divided into two categories: one-
dimensional waveguides and two-dimensional waveguides. The
slab or planar waveguides in one-dimensional structures appear
in a wide range of applications, including photonic-integrated
circuits (PICs). PICs may make possible high-throughput
and low-power signal processors that overcome the limits of
conventional electronic digital signal processing technology
[3]. One-dimensional PIC structures have been studied, but no
detailed study of avoided crossings has been carried out using
slab waveguides. Avoided crossings can play an important role
in the mode coupling in silicon PICs [4]. Recently, hollow-core
optical fibers that are two-dimensional waveguides have been
widely studied and can have low loss values around 0.5 dB/km
[5–11]. These fibers can be designed so that most of the
power is transmitted through an air core with low loss and low

0740-3224/21/12F104-11 Journal © 2021Optica PublishingGroup

https://orcid.org/0000-0002-4352-3173
https://orcid.org/0000-0003-1323-4079
https://orcid.org/0000-0003-0269-8433
https://orcid.org/0000-0001-6426-3051
mailto:jonathan_hu@baylor.edu
https://doi.org/10.1364/JOSAB.435828
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAB.435828&amp;domain=pdf&amp;date_stamp=2021-10-25


Tutorial Vol. 38, No. 12 / December 2021 / Journal of the Optical Society of America B F105

nonlinearity. As a result, hollow-core fibers are useful for a vari-
ety of applications, such as high-power delivery [12], biological
applications [13,14], gas lasers [15–17], and supercontinuum
generations [18]. In air-core optical fibers, such as negative
curvature fibers, the fundamental core mode couples strongly to
additional core and cladding modes in certain conditions. The
analysis of avoided crossings using antiresonant glass partitions
can provide insight into the mode coupling and loss of the core
mode in negative curvature fibers [19–21]. If the glass partition
thickness corresponds to antiresonance in the slab waveguide,
then the fundamental mode loss is low. In this case, the width
of the avoided crossing, which is defined as the minimum
difference in effective indices of the coupled modes, is small
due to weak coupling. When the glass thickness corresponds
to resonance, there is a larger avoided crossing width, and the
fundamental mode experiences a higher loss. In addition, mode
coupling and avoided crossings are important in understanding
the efficiency of ring resonators, which have been successfully
used for filters, biosensing, and frequency comb generations
[22].

Avoided crossings, also known as anticrossings, were first
described in quantum mechanics by Neumann and Wigner,
who showed that energy levels of electronic states cannot cross
[23]. Avoided crossings have also been used to explain the non-
intersection of electron energy states for different molecules
[24,25]. The first discussion of avoided crossings in optics
was made in 1963 by Eck et al. in their study of fluorescence
[26]. In 1979, Marcuse and Kaminow observed avoided cross-
ings of transverse electric (TE) and transverse magnetic (TM)
modes within a thin-film slab waveguide [27]. The first study of
avoided crossings in optical fibers was carried out in 1988 in a
fiber-optic ring resonator [28]. More recently, avoided crossings
have become important in understanding the coupling between
the core and cladding modes in solid-core photonic crystal
fibers [29], photonic bandgap fibers (PBGFs) [30–34], negative
curvature fibers [19–21], and kagome fibers [35]. In high-power
laser systems using a photonic crystal fiber, it was later found
that the avoided crossing induced by the pump profile, bending,
or index depression may lead to unwanted deformations of the
output beam [29]. On the other hand, avoided crossings have
been used for optical filters [36], refractive index sensors [37–
39], temperature sensors [40], and higher-order mode (HOM)
suppression [19,41,42].

The rest of this tutorial is organized as follows: in Section 2,
we review the equations for the coupled-mode theory for the
guided mode in a high-index core slab waveguide. Section 3
describes an example of a guided mode in a slab waveguide,
where the index of core, ng , is larger than the index of cladding,
nc . We compare the computationally exact results, computed
using the finite difference method (FDM), to the results from
coupled-mode theory. Section 4 describes the derivation of the
coupled-mode theory for leaky modes in an antiresonant slab
waveguide. Section 5 shows an example of mode coupling in an
antiresonant slab waveguide. We again compare the computa-
tionally exact results to the results from coupled-mode theory.
In Section 6, we discuss how the insights that we have gained
can be applied to more complex geometries, and we conclude in
Section 7.

2. COUPLED-MODE THEORY FOR GUIDED
MODES IN A SLAB WAVEGUIDE WITH ng > nc

We start with a description of the guided modes in a one-
dimensional five-layer slab waveguide with two core layers and
three cladding layers, shown in Fig. 1(a). The refractive index
of the two guiding layers is ng , and the refractive index of the
surrounding layers is nc . To have guided modes, we must have
ng > nc . The thicknesses of the guiding layers are t1 and t2. In
coupled-mode theory, we decouple the two guiding layers by
considering the modes in two waveguides, each of which has one
guiding layer, corresponding to one of the two guiding layers in
the original waveguide, labeled waveguide 3 in Fig. 1(b).

The refractive index distributions for waveguides 1, 2, and 3
are denoted by n1(x ), n2(x ), and n3(x ), respectively, and may
be written as

n2
1(x )= n2

c + n2
−
(x ),

n2
2(x )= n2

c + n2
+
(x ),

n2
3(x )= n2

c + n2
−
(x )+ n2

+
(x ), (1)

where n2
+
(x ) and n2

−
(x ) are defined as

n2
+
(x )=

{
n2

g − n2
c g /2< x < g /2+ t2

0 otherwise
,

n2
−
(x )=

{
n2

g − n2
c −t1 − g /2< x <−g /2

0 otherwise
. (2)

We will focus on TE modes. In this case, the field component
E y obeys the Helmholtz equation

∂2 E y

∂z2
+
∂2 E y

∂x 2
+

n2(x )ω2
0

c 2
E y = 0. (3)

If we consider one mode in waveguide 1 with a normalized
transverse profile ψ1(x ) and wavenumber β1 and one mode
in waveguide 2 with normalized transverse profile ψ2(x ) and
wavenumber β2, then there is a propagating electric field in
waveguide 3 that may be written approximately as

Fig. 1. (a) Illustration of the two-core index-guided waveguide
structure. (b) Illustration of the refractive index profiles for waveguides
1, 2, and 3.
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E y (x , z, t)= A1(z)ψ1(x )exp[i(ω0t − β1z)]

+ A2(z)ψ2(x )exp[i(ω0t − β2z)]. (4)

Transverse mode profilesψ1(x ) andψ2(x ) are normalized so
that

∫
∞

−∞
|ψ1,2|

2dx = 1. Parameters A1(z) and A2(z) are slowly
varying amplitudes for waveguides 1 and 2 respectively, so that

− β2
1ψ1 +

∂2ψ1

∂x 2
+

n2
1(x )ω

2
0

c 2
ψ1 = 0,

− β2
2ψ2 +

∂2ψ2

∂x 2
+

n2
2(x )ω

2
0

c 2
ψ2 = 0. (5)

Substituting Eq. (4) into Eq. (3) and using Eq. (5)
with the slowly varying envelope approximation so that
|∂2 A1,2/∂z2

| � β1,2|∂ A1,2/∂z|, we obtain

− 2iβ1ψ1
∂ A1

∂z
exp(−iβ1z)− 2iβ2ψ2

∂ A2

∂z
exp(−iβ2z)

+
n2
+
(x )ω2

0

c 2
A1ψ1exp(−iβ1z)+

n2
−
(x )ω2

0

c 2
A2ψ2

× exp(−iβ2z)= 0. (6)

We now multiply the above equation by ψ∗1 (x ) and ψ∗2 (x ),
integrate over x , and use the normalized fields, yielding two
equations:

∂ A1

∂z
+

iκ12

2β1
A2exp[i(β1 − β2)z] = 0,

∂ A2

∂z
+

iκ21

2β2
A1exp[−i(β1 − β2)z] = 0, (7)

where

κ11 =
ω2

0

c 2

∫
∞

−∞

n2
+
(x )|ψ1(x )|2dx ,

κ12 =
ω2

0

c 2

∫
∞

−∞

n2
−
(x )ψ∗1 (x )ψ2(x )dx ,

κ21 =
ω2

0

c 2

∫
∞

−∞

n2
+
(x )ψ1(x )ψ∗2 (x )dx ,

κ22 =
ω2

0

c 2

∫
∞

−∞

n2
−
(x )|ψ2(x )|2dx . (8)

In the derivation, we assume that ψ1(x ) and ψ2(x )
are well confined in the individual waveguides, so that∫
∞

−∞
ψ∗1 (x )ψ2(x )dx � 1, κ11� κ12, and κ22� κ21. The

amplitudes in the individual waveguides can be written as

A1 = R1exp[i1βz/2],A2 = R2exp[−i1βz/2], (9)

where1β = β1 − β2, while R1 and R2 are slowly varying quan-
tities. Using Eq. (9), we can rewrite Eq. (7) in matrix form as

dR
dz
= iλR=−i

[
1β/2 κ12/(2β1)

κ21/(2β2) −1β/2

]
R, (10)

where R can be written as

R=
[

V1

V2

]
e iλz
= Ve iλz. (11)

Equation (10) is a standard matrix algebra eigenvalue prob-
lem, where V is the eigenvector. The condition for a nontrivial
solution for V is that the determinant of the matrix must vanish.
We then find

−
(1β)2

4
+ λ2
−
κ12κ21

4β1β2
= 0, (12)

which yields the solutionλ1,2, where

λ1,2 =∓
1

2

[
(1β)2 +

κ12κ21

β1β2

]1/2

. (13)

According to Eq. (11), the corresponding normalized eigenvec-
tors are[

V1

V2

]
=

[
−κ12

β1(1β + 2λ)

]
/{κ2

12 + [β1(1β + 2λ)]2}1/2.

(14)
When 1β� κ12, κ21, we find that λ1,2 =∓1β/2, and the
solutions for V are (0,1) or (1,0), which means the two solutions
are entirely in waveguide 2 or waveguide 1. When 1β = 0,
we find that β1 = β2 and κ12 = κ21, yielding the solutions of
(1/2, 1/2) or (−1/2, 1/2) for V; hence, the solution in field
intensity is nearly equal in both waveguides.

Using Eqs. (4), (9), and (11), the field in waveguide 3 may be
written as

E y (x , z, t)= V1ψ1(x )exp[i(ω0t − β ′1z)]

+ V2ψ2(x )exp[i(ω0t − β ′2z)], (15)

with

neff1 = β
′

1/k0 =
1

k0

(
β1 + β2

2
− λ1

)
,

neff2 = β
′

2/k0 =
1

k0

(
β1 + β2

2
− λ2

)
, (16)

where k0 is the wavenumber, and neff1,2 = β
′
1,2/k0 are the effec-

tive indices of the two modes that we are considering. We now
obtain the width of the avoided crossing when β1 = β2 and
1β = 0:

δ = |neff1 − neff2| =
1

k0

(
κ12κ21

β1β2

)1/2

, (17)

which we define as the minimum difference in effective indices
for the two modes in waveguide 3. Coupling coefficients κ12

and κ21 are given in terms of the approximate modes according
to Eq. (8). We have thus found that the refractive indices of
the true modes and the avoided crossing in waveguide 3 can be
approximately obtained using the refractive indices and mode
profiles of the modes of waveguides 1 and 2.

3. EXAMPLE OF MODE COUPLING IN A SLAB
WAVEGUIDE WITH GUIDED MODES

In this section, we will use the equations from Section 2 to study
the mode coupling between the fundamental modes in the
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Fig. 2. (a) Effective index for the fundamental core mode in wave-
guides 1 and 2 (dashed curves) and waveguide 3 (solid curve) as a func-
tion of t2. Inset in (a) shows a magnified plot so that the avoided cross-
ing may be easily seen. (b) Magnified plot in (a) around the first avoided
crossing at t2 = 5 µm. Insets show mode profiles in waveguide 3. The
red dashed curve shows the effective index obtained from Eq. (16).

five-layer slab waveguide with two core layers and three cladding
layers (waveguide 3). We consider an example with ng = 1.45
and nc = 0.96ng = 1.39, which was previously studied [1].
The thickness of the first glass layer, t1, is fixed at 5 µm. The
wavelength is 1 µm. The gap between glass slabs, g , is fixed at
2 µm. We increase the thickness of the second glass layer, t2,
from 4 to 12µm so that the avoided crossing can be observed. In
Fig. 2(a), the solid blue curves show the effective indices of the
modes in the two-layer slab waveguide 3, shown in Fig. 1. The
dotted green curve shows the effective index for the fundamental
mode of waveguide 1, which has a constant value of 1.44742.
The dotted orange curves show the effective indices for the fun-
damental mode and the first high-order mode of waveguide 2,
which has a changing thickness, t2. We use the FDM to calculate
the computationally exact modes and the effective indices.

In Fig. 2(a), the dotted curves for the effective index of the
two single-layer waveguides overlap with the solid blue curves
for the effective index of the two-layer waveguide, except within
an avoided crossing region. An avoided crossing occurs when
t2 is 5.0 µm or 10.6 µm, and the modes in the two high-index
glass layers couple. To show the avoided crossing clearly, the
inset in Fig. 2(a) shows a magnified plot near the first avoided
crossing so that the differences in the effective indices may be

Fig. 3. Avoided crossing width calculated using the minimum
difference in the effective index, δ, versus the gap separation in wave-
guide 3. The solid blue curve shows the computationally exact result,
and the dashed red curve shows the approximate result from coupled-
mode theory [Eq. (17)]. The top right inset shows a magnified plot
of Fig. 2(b) to illustrate the avoided crossing at when g = 2 µm and
t1 = t2 = 5 µm. The bottom left inset shows a magnified plot when g
is between 0.04 and 0.5 µm.

easily distinguished. The insets in Fig. 2(b) show the mode pro-
files in waveguide 3 for different t2 thicknesses equal to 4.7, 5.0,
and 5.3 µm near the first avoided crossing. When t2 < 5 µm,
the modes are well confined in one of the glass layers. When
t2 = 5 µm, where the avoided crossing occurs, the two modes
become a hybrid even or odd mode, which is located in both
of the two high-index layers. When t2 > 5 µm, the coupling
decreases and the two modes are again primarily located in
one of the two glass waveguides. If we follow the modes along
either of the continuous branches of the effective index, we see
that the mode switches from one waveguide to the other. This
mode-swapping is a characteristic feature of avoided crossings.

We now use Eq. (17) from coupled-mode theory to study
the avoided crossing, as shown in the dashed red curves in
Fig. 2(b). We found that the dashed red curves using Eq. (17)
agree exactly with a computationally exact FDM calculation of
the modes in waveguide 3. Hence, the overlap of approximate
modes confined in waveguides 1 and 2 via coupled-mode theory
can account for the avoided crossing and makes it possible to
approximate the true modes in waveguide 3.

We now set t1 = t2 = 5 µm and vary the gap, g , between the
core layers. We plot the difference in the effective indices during
the avoided crossing, δ, between the fundamental mode in core
layer 1 and the fundamental mode in core layer 2, in Fig. 3. The
top right inset in Fig. 3 gives an illustration of δ, showing the
minimum difference between effective indices of the modes in
waveguide 3. The bottom left inset shows a magnified plot of
δ for small gap sizes so that differences between the computa-
tionally exact result and the result from coupled-mode theory
may be distinguished. The parameter δ can be used to quantify
the width of the avoided crossing and the strength of coupling
between modes. A larger avoided crossing corresponds to a
stronger coupling. The value of δ decreases exponentially as
g increases. As the gap between adjacent core layers increases,
the overlap between modes decreases, leading to the decrease in
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the avoided crossing width. For very small gaps, the agreement
between the computationally exact result and the approximate
result from Eq. (17) breaks down.

4. COUPLED-MODE THEORY FOR LEAKY
MODES IN AN ANTIRESONANT SLAB
WAVEGUIDE

In an antiresonant slab waveguide, the antiresonance condition
is needed to guide the mode in the central air slab [43]. To satisfy
the antiresonance condition, the phase difference in the directly
transmitted transverse wave vector and transverse wave vector
with an additional two reflections must be an odd multiple ofπ .
The glass thickness required for the antiresonance condition is
given by [43–45]

t = (m − 0.5)λ/[2(n2
g − n2

0)
1/2
], (18)

where m is a positive integer. To study coupled-mode theory
in a leaky, antiresonant slab waveguide, we consider the slab
waveguide that we show in Fig. 4(a), which has two large air slabs
surrounded by glass–air–glass layers. We use two closely spaced
higher-index glass layers (a double glass partition) as a barrier
between the mode-confining air slabs, denoted as Wcore1,2, to
reduce the mode content between cores 1 and 2. In negative
curvature fibers [44], center modes are naturally separated from
the cladding air modes. The negative curvature in the glass layer

n2
+
(x )=


n2

g − n2
0 (t + g /2+Wcore2) < x < (2t + g /2+Wcore2)

n2
g − n2

0 (2t + 3g /2+Wcore2) < x < (3t + 3g /2+Wcore2)

0 otherwise
,

n2
−
(x )=


n2

g − n2
0 −(3t + 3g /2+Wcore1) < x <−(2t + 3g /2+Wcore1)

n2
g − n2

0 −(2t + g /2+Wcore1) < x <−(t + g /2+Wcore1)

0 otherwise
,

n2
m(x )=


n2

g − n2
0 −(g /2+ t) < x <−g /2

n2
g − n2

0 g /2< x < g /2+ t
0 otherwise

. (20)

strongly confines the fundamental mode so that it has low
loss. To achieve a similar confinement in the single-slab struc-
tures that we are considering, we have found that it is necessary
to use the double glass partitions that we show in Fig. 4.

Antiresonant waveguides are waveguides in which a lower
index or air core is surrounded by higher-index or glass barriers,
which are then surrounded in turn by more lower-index or air
regions [1]. These can then be surrounded by more barriers,
leading to more complex structures. Slab waveguides with
this structure are antiresonant reflecting optical waveguides
(ARROWs) [43,46], and if the outside cladding layers are lower-
index or air, then there are no completely confined modes, and
the modes of the structure will all be leaky [1]. However, the
modes can be well confined in the core with low leakage if an
antiresonant condition is obeyed [43,44].

Similar to the five-layer slab waveguide simulations in
Section 2, three structures are used to understand the coupling
of adjacent air-core layers. The refractive index distributions for
waveguides 1, 2, and 3 in Fig. 4(b) are given by n1(x ), n2(x ),
and n3(x ):

n2
1(x )= n2

−
(x )+ n2

m(x )+ n2
0,

n2
2(x )= n2

+
(x )+ n2

m(x )+ n2
0,

n2
3(x )= n2

−
(x )+ n2

+
(x )+ n2

m(x )+ n2
0, (19)

where

Fig. 4. (a) Illustration of the two-core antiresonant slab waveguide. (b) Definitions of refractive index profiles.
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The field component E y once again obeys the Helmholtz
equation, Eq. (3); however, all the modes are leaky [1].
Absorbing boundary layers (ABLs) must be used to calcu-
late the propagation constants in leaky waveguides, and the
validity of this approach is described in detail in [1]. The field in
the coupled structure with an index of n3(x ) is approximated by
Eq. (4). The TE field distributions and propagation constants
for the modes in waveguides 1 and 2 are denoted by ψ1(x ),
ψ2(x ), β1, and β2, respectively. The transverse field distribu-
tions ψ1(x ) and ψ2(x ) are the solutions to the wave equation
in the corresponding waveguide with index distributions n1(x )
and n2(x ), which yields

− β2
1ψ1 +

∂2ψ1

∂x 2
+

n2
1(x )ω

2
0

c 2
ψ1 = 0,

− β2
2ψ2 +

∂2ψ2

∂x 2
+

n2
2(x )ω

2
0

c 2
ψ2 = 0. (21)

We normalize the transverse mode fields so that∫
∞

−∞
|ψ1,2|

2dx = 1, which is possible once the absorbing
layers are added and is feasible if the leakage power in the modes
is small [1]. We carry out an analysis that is analogous to that in
Section 2, and we find

∂ A1

∂z
+

iκ11 A1

2β1
+

iκ12

2β1
A2exp[i(β1 − β2)z] = 0,

∂ A2

∂z
+

iκ22 A2

2β2
+

iκ21

2β2
A1exp[−i(β1 − β2)z] = 0, (22)

where

κ11 =
κ+11 − I12κ

+

21

1− |I12|
2
,

κ12 =
κ−12 − I12κ

−

22

1− |I12|
2
,

κ21 =
κ+21 − I ∗12κ

+

11

1− |I12|
2
,

κ22 =
κ−22 − I ∗12κ

−

12

1− |I12|
2
,

κ+11 =
ω2

0

c 2

∫
∞

−∞

n2
+
(x )|ψ1(x )|2dx ,

κ−12 =
ω2

0

c 2

∫
∞

−∞

n2
−
(x )ψ∗1 (x )ψ2(x )dx ,

κ+21 =
ω2

0

c 2

∫
∞

−∞

n2
+
(x )ψ1(x )ψ∗2 (x )dx ,

κ−22 =
ω2

0

c 2

∫
∞

−∞

n2
−
(x )|ψ2(x )|2dx ,

I12 =

∫
∞

−∞

ψ∗1 (x )ψ2(x )dx . (23)

We note that I12 may not be negligible since there can be signifi-
cant overlap within the two glass and air slabs that separate the
air-core layers. We now introduce new variables Ã1 and Ã2 as

A1 = Ã1exp

(
−

iκ11

2β1
z
)

A2 = Ã2exp

(
−

iκ22

2β2
z
)

. (24)

Equation (22) then becomes

∂ Ã1

∂z
+

iκ12

2β1
Ã2exp[i(1β)z] = 0,

∂ Ã2

∂z
+

iκ21

2β2
Ã1exp[−i(1β)z] = 0, (25)

where1β = β1 − β2 +
κ11
2β1
−

κ22
2β2

. The amplitudes in the indi-
vidual waveguides can be written as

Ã1 = R1exp(i1βz/2) Ã2 = R2exp(−i1βz/2), (26)

where R1 and R2 are slowly vary quantities. Substituting
Eq. (26) into Eq. (25), we obtain the same matrix form as
Eq. (10):

dR
dz
= iλR=−i

[
1β/2 κ12/(2β1)

κ21/(2β2) −1β/2

]
R, (27)

where R can be written as e iλz
[V1V2]

T, and T represents the
matrix transpose operator. We may use the same procedure
described by Eqs. (10)–(14) in Section 2 with a slightly changed
β ′1 and β ′2. The effective indices of the modes in waveguide 3 are
given by

neff1 = β
′

1/k0 =
1

k0

(
β1 +

κ11

2β1
−
1β

2
− λ1

)
,

neff2 = β
′

2/k0 =
1

k0

(
β2 +

κ22

2β2
+
1β

2
− λ2

)
. (28)

Again, the width of the avoided crossing, defined as the mini-
mum difference in effective indices for the modes in waveguide
3, is given by

δ = |neff1 − neff2| =
1

k0

(
κ12κ21

β1β2

)1/2

, (29)

which is the same as in Eq. (17), but with different expressions
for κ12 and κ21 in Eq. (23). The refractive indices of the modes
and the avoided crossing in the multi-layer slab waveguide can
then be derived using the refractive indices and mode profiles of
the approximate modes in the two single air-core antiresonant
slab waveguides, just as we did with guided modes in Section 2.

5. MODE COUPLING IN ANTIRESONANT SLAB
WAVEGUIDES

In this section, we will use the equations in Section 4 to study the
mode coupling of the antiresonant slab waveguide in Fig. 4(a).
According to the structures shown in Fig. 4, the thickness of
the air-core layer in waveguide 1, Wcore1, is fixed at 30 µm. The
cladding thickness, Wclad, is fixed at 37µm. The glass thickness,
t , is fixed at 0.72 µm, which yields the antiresonance condition
for a wavelength of 1 µm. The air gap, g , is set to 5 µm. An
absorbing boundary condition was introduced in the simulation
with a width of 150µm. The index in the ABL is modeled as [1]
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n(x )= n0

[
1+ i

(
|x | − L1,2

WABL

)2

s

]1/2

, (30)

where n0 is the index of air, WABL is the ABL thickness, and L1,2

are the distances from the center to the beginning of the ABL as
denoted in Fig. 4(a). We set s = 6× 10−6 so that the mode field
will decay as it reaches the edge of the simulation window. We
increase Wcore2 from 20 to 70 µm so that the avoided crossings
can be observed in waveguide 3. In Fig. 5(a), the effective indices
for the modes in waveguide 1 and waveguide 2 are plotted by
dotted green and orange curves, respectively. The effective
indices for the modes in waveguide 3 are plotted by solid blue
curves. Their effective indices cross with the effective index

Fig. 5. (a) Effective index for the fundamental core mode in
waveguides 1 and 2 (dotted curves). Effective indices for the two fun-
damental core modes in waveguide 3 (solid curves). (b) Magnified plot
in (a) around the first avoided crossing at Wcore2 = 30 µm. Insets show
the mode in waveguide 3 around the avoided crossing with different
Wcore2. The dashed red curves show results using Eq. (28). (c) Leakage
loss of the hybrid modes in waveguide 3 at the first avoided crossing.

of waveguide 1 at 30 and 60 µm, respectively. The inset in
Fig. 5(a) shows a magnified plot at the first avoided crossing so
that differences in effective indices may be easily distinguished.
This index matching explains the avoided crossing and cou-
pling of the modes in waveguide 3 when Wcore2 is 30 µm or
60 µm. If Wcore2 further increases, more couplings will occur
when Wcore2 is a multiple of Wcore1, which corresponds to the
coupling between the fundamental mode in the first air core
and an HOM in the second air core in waveguide 3. Figure 5(b)
shows a magnified plot of Fig. 5(a) so that the differences in
mode profiles near the first avoided crossing may be illustrated.
The insets show mode profiles when Wcore2 is 29.95µm, 30µm,
or 30.05 µm. The solid blue curves in Fig. 5(b) show the mode
indices in waveguide 3. The dashed red curves show the effective
indices using Eq. (28). The two methods agree well. When
Wcore2 < 30 µm, the modes are well confined in one of the air-
core layers. When Wcore2 = 30 µm, where the avoided crossing
occurs, the two modes couple with each other and become a
hybrid even or odd mode, which is located in both air cores.
When Wcore2 > 30 µm, the coupling disappears and the two
modes change places between the two air layers.

Figure 5(c) shows that the leakage loss curves calculated using
the FDM for the modes in waveguide 3 also exhibit an avoided
crossing. As shown in Figs. 5(a) and 5(b), one of the two coupled
modes always resides in the wider air layer and has a larger effec-
tive index, as the core size in Wcore2 increases. The leakage loss
for the modes confined in the core is dominated by the core size,
when the same antiresonant layers are used. Hence, the mode
that resides in the wider air layer always has lower leakage loss,
which leads to an avoided crossing in the leakage loss curves.

Next, we study the impact of glass layer thickness, t , on the
width of the avoided crossing, δ, in waveguide 3. We fix Wcore1

and Wcore2 at 30 µm. We show the results in Fig. 6. The solid
blue and dashed red curves show the width of the avoided cross-
ing as the glass thickness varies. The solid blue curve shows the
computationally exact result, while the dashed red curve shows
the result from Eq. (29). The solid orange curve represents the
loss. When the glass thickness is near 0.72 and 1.2 µm, which
corresponds to antiresonance, the mode loss is low, and the
width of the avoided crossing is small due to weak coupling.
When the glass thickness is 0.95µm, the resonance condition is

Fig. 6. Width of the avoided crossing and loss at the avoided
crossing as a function of glass thickness with g = 2 µm and
Wcore1 =Wcore2 = 30 µm.
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Fig. 7. Width of the avoided crossing and loss during an avoided
crossing as a function of the width of air gap g with t = 0.72 µm and
Wcore1 =Wcore2 = 30 µm.

satisfied, which leads to a large avoided crossing width and high
loss.

We also study different gap sizes and show results in Fig. 7.
The glass thickness is now fixed at 0.72 µm. The solid blue and
dashed red curves show respectively the computationally exact
result and the result from Eq. (29) for the avoided crossing width
in waveguide 3. The solid orange curve represents loss. When
the air gap approaches a multiple of Wcore1 =Wcore2 = 30 µm,
coupling between the air mode in the core and HOM in the air
gap becomes strong, the loss increases, and the width of avoided
crossing increases.

6. AVOIDED CROSSINGS IN OPTICAL FIBERS

Previous sections describe avoided crossings for guided modes
and leaky modes in slab waveguides where the modes can be
described analytically. Avoided crossings play an important role
in solid-core photonic crystal fibers [29], PBGFs [30–34], neg-
ative curvature fibers [19–21], and kagome fibers [35], where
simple analytical expressions for the modes do not exist and the
modes must be found computationally. This section discusses
two examples of avoided crossings in solid-core and air-core
photonic crystal fibers. We then describe the similarities and
differences between avoided crossings in optical fibers and the
simpler slab waveguides that we have analyzed in detail.

Jansen et al. [29] studied a large pitch photonic crystal fiber
(LPF) as shown in Fig. 8. The pitch,3, diameter of hole, d , and
wavelength are 30 µm, 0.9 µm, and 1.03 µm, respectively. The
motivation to use an LPF with a large mode area comes from the
requirement for high average output power. The advantage of
using an LPF is that the HOMs are delocalized from the core,
which leads to a reduction in the excitation of HOMs from a
near-Gaussian beam, as well as increased loss for the HOMs
[29]. Jansen et al. [29] also showed that different pump core
diameters, bending radii, and/or index depression may lead
to avoided crossings that manifest themselves in unwanted
deformations of the output beam. Figure 9 shows three avoided
crossings in the effective index curves for the fundamental mode
and the HOMs. As the air-clad diameter increases, the trans-
verse mode profiles switch between modes. The same switching
behavior is present in the slab waveguides that we analyzed in

Fig. 8. Schematic structure of a rare-earth-doped (green region)
double-clad LPF. Reprinted with permission from [29]. Copyright
2011 Optical Society of America.

Fig. 9. Detailed plot of one broad and two narrow avoided crossings
(marked in green vertical lines). The modes involved in avoided cross-
ings are shown in black, red, green, and blue. Reprinted with permis-
sion from [29]. Copyright 2011 Optical Society of America.

Fig. 10. Transverse mode profiles of the modes involved in the
broad avoided crossing in Fig. 9 around an air-clad diameter of
188.5 µm. Across the avoided crossing, the former fundamental mode
evolves into an HOM, and an HOM takes over the role as the funda-
mental mode. Reprinted with permission from [29]. Copyright 2011
Optical Society of America.

previous sections and is generally present in any system with
avoided crossings. Figure 10 shows the evolution of the trans-
verse mode profiles at the first avoided crossing. As the air-clad
diameter changes from 185 to 195 µm, the fundamental mode
evolves to the HOM and the HOM profile completely switches
places from the cladding to the core. The mode-switching
that we show in Figs. 9 and 10 for solid-core LPFs is analogous
to the mode-switching that we show in Figs. 2 and 5 for slab
waveguides.

Hollow-core fibers may also exhibit avoided crossings. A
large core size is often used in hollow-core fibers to lower the
fiber loss. At the same time, HOMs may exist in fibers with a
large core. It is preferable to suppress higher-order core modes
while preserving low leakage loss for the fundamental core
mode [19,42]. This approach is analogous to using resonant
coupling between the core modes and defect modes in PBGFs
[30–34]. The work by Uebel et al. [42] optimized the ratio
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Fig. 11. (a) Sketch of the structure, with the key dimensions
marked in core diameter D, capillary inner diameter d , and wall thick-
ness t . (b) Fundamental LP01 mode is strongly confined. (c) HOMs
experience high loss because they are coupled to modes in the capil-
laries. Light in the core leaks out to the solid glass sheath (indicated by
blue arrows). Reprinted with permission from [42]. Copyright 2016
Optical Society of America.

of the capillary tube diameter, d , to the air-core diameter, D
so that an avoided crossing between higher-order core modes
and fundamental tube modes leads to an increase in the loss of
higher-order core modes. Figure 11(a) shows the cross section of
the negative curvature fiber considered along with illustrations
for parameters d and D. Figures 11(b) and 11(c) show the trans-
verse mode profiles for the fundamental mode and first HOM,
respectively.

Figure 12(a) shows the effective indices of the fundamental
mode in orange, the first HOM in blue, and the antiresonant
element (ARE) mode in red. The effective indices for the
HOM and ARE mode exhibit an avoided crossing at a ratio
d/D= 0.68. Figure 12(b) shows the loss for the fundamen-
tal mode, HOM, and ARE mode. At the ratio d/D= 0.68,
the HOM loss exponentially increases while the funda-
mental mode loss stays low. To quantify the suppression of
HOMs, Uebel et al. [42] introduced a figure of merit (FOM)
as FOMlm = αlm/α01 − 1, where αlm is the loss for the LPlm

mode in dB/m, and α01 is the loss of the fundamental core
mode. The gray-shaded area in Fig. 12(b) shows the region

where FOM11 > 20. Figure 12(c) shows a magnified plot of the
avoided crossing between the HOM and the ARE mode.

In two-dimensional air-core bandgap fibers, West et al. [31]
showed that loss is related to the width of the avoided crossing
between the air-core mode and the surface modes supported at
the core–cladding interface, which is consistent to what appears
in Fig. 12 near the avoided crossing. Hence, the width of an
avoided crossing is a key parameter in determining the loss of
the fundamental core mode. Debord et al. [35] observed and
analyzed a similar avoided crossing in kagome fibers.

In both solid-core and air-core optical fibers, the core mode
couples strongly to other core modes and cladding modes under
certain conditions. The analysis of avoided crossings is useful
in determining mode coupling and the loss of the core mode
in specialty solid-core and hollow-core fibers when coupling
occurs between the core mode and cladding modes. Due to
the complexity in design of many modern-day specialty fibers,
numerical solutions must be employed to calculate the effective
indices and observe the avoided crossings. However, the basic
switching behavior and its dependence on the width of the
avoided crossing are unchanged.

There are differences in the leakage loss curves during avoided
crossings between the slab waveguides and optical fibers.
Because the slab waveguide is a one-dimensional structure, the
leakage loss is dominated by the core size, meaning that one of
the two modes will always have a higher loss as we change Wcore2

during the avoided crossing, as shown in Fig. 5. Hence, one of
the two coupled modes always has lower loss compared to the
other coupled mode, and an avoided crossing is manifested in
the leakage loss curves in Fig. 5(c). In two-dimensional struc-
tures, such as specialty optical fibers, the mode in the cladding
has a higher loss than the mode in the core. Hence, the leakage
loss curves in Fig. 12(b) cross, rather than form an avoided
crossing.

Fig. 12. (a) Modal refractive indices of the LP01 (orange) and even and odd LP11 (blue) modes. (b) Modal losses and FOM11 (green). The brown
dashed curves in each plot refer to the antiresonant element (ARE) mode of an isolated ARE capillary. For optimal HOM suppression, d/3= 0.68.
The geometrical parameters are t/D= 0.01 and D/λ= 20. The gray-shaded area in (b) shows the region where FOM11 > 20. (c) Magnified plot of
the avoided crossing in (a). Reprinted with permission from [42]. Copyright 2016 Optical Society of America.
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7. SUMMARY

In this tutorial, we present coupled-mode theory in slab wave-
guides for both guided modes in index-guided waveguides
and leaky modes in antiresonant waveguides. The theory for
the former is classical and covered in many textbooks, but the
latter is not. Our goal is to emphasize the analogy between these
two waveguide types. Antiresonant photonic crystal fibers
have become important in applications, but geometries are too
complex to be simply analyzed. For both waveguide types, we
considered a geometry with two cores. For the index-guided
waveguide, the two cores are separated and surrounded by a
lower-index cladding. For the antiresonant waveguide, the two
air cores are separated from each other and from the air cladding
by double-glass partitions. Although the modes in antiresonant
waveguides are leaky, the theoretical development to determine
the mode coupling near an avoided crossing is almost identi-
cal. Antiresonance implies that the avoided crossings are weak
and the modes are well confined to the cores. This behavior is
analogous to guided-mode waveguides with a large gap between
cores. When the modes are well confined, leakage is low, and
hence so is the loss. The correlation between loss and width of
the avoided crossing is important in applications to photonic
crystal fibers since it is usually desirable to have low loss. There
is no analogous loss mechanism in index-guided waveguides.
Coupled-mode theory accurately predicts the magnitude of
avoided crossings, and their locations as parameters vary for
both waveguide types.

In conclusion, we have shown that it is possible to explain
the principal features of avoided crossings in index-guided and
antiresonant waveguides using a simple slab waveguide model.
We have also shown that a coupled-mode theory close to the
standard theory for guided modes can be used to predict the
behavior of avoided crossings for leaky modes. We discussed
examples of avoided crossings in solid-core and air-core optical
fibers. We described the similarities and differences between spe-
cialty optical fibers and the simpler slab waveguides that we have
analyzed in detail. Thus, this model is a useful basis for under-
standing avoided crossings in the more complex geometries
typically found in photonic crystal fibers.
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