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A system of coupled nonlinear Schrödinger equations describes pulse propagation in weakly birefringent
optical fibers. Soliton solutions of this system are found numerically through the shooting method. We employ
Poincaré surface of section plots—a standard dynamical systems approach—to analyze the phase space be-
havior of these solutions and neighboring trajectories. Chaotic behavior around the solitons is apparent and
suggests dynamical instability. A Lyapunov stability analysis confirms this result. Thus, solitons exist in the
midst of chaos.
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I. INTRODUCTION

Solitons �1,2� propagating through optical fibers �3� have
received a large amount of attention due both to their inter-
esting mathematical properties and their potential uses in
optical fiber technology. Solitons are solitary waves that
achieve a balance between linear dispersive effects and non-
linear effects in such a way that they maintain their shape
over long distances. This interesting behavior has suggested
the use of solitons as information carriers in optical fibers or
as mode-locked laser pulses �3�. A large amount of research
has been performed in order to understand the nature of these
solitons. Pulse propagation through an optical fiber is de-
scribed by the nonlinear Schrödinger equation

iuz +
1

2
utt + �u�2u = 0, �1�

where u is the complex envelope of the electric field, t is the
retarded time, and z is the propagation distance along the
optical fiber. The subscript z indicates a derivative with re-
spect to distance z and the subscript t indicates a derivative
with respect to time t. We have used soliton normalization to
remove the explicit dependence on the dispersion coefficient
and nonlinear coefficient �3�. Equation �1� is solvable
through the inverse scattering transform and detailed descrip-
tions of this method of solution can be found in Refs. �1,2�.

While our study was motivated by this equation’s ap-
plication to optical fibers, we note that the nonlinear
Schrödinger equation applies to a wide variety of physical
systems �1,2�, and our results—which make no appeal to the
particular properties of optical fibers or, for that matter, to
any optical system—have an equally broad range of applica-
bility. The solutions of the nonlinear Schrödinger equation
accurately describe the propagation of pulses through single-
mode fibers, but in reality most optical fibers are not single
mode, and the pulses that propagate in them are affected by
birefringence due to fiber imperfections. Birefringence can
cause pulses to split, as one polarization mode lags behind

the other. The propagation of these two polarization modes
is often described by a system of coupled nonlinear
Schrödinger equations

iuz +
1

2
utt + ��u�2 + ��v�2�u = 0, �2a�

ivz +
1

2
vtt + ���u�2 + �v�2�v = 0, �2b�

where u and v are normalized complex envelopes of the two
polarizations and � is the nonlinear coupling strength. In
birefringent optical fibers, � varies from 2/3 to 2 depending
on the ellipticity of the polarization states �4�. Again, while
our work on this system was motivated by applications to
birefringent optical fibers, we note that this equation applies
generically to physical systems in which two modes are
coupled through a cubic interaction �1,2�.

In the context of optical fibers, Eq. �2� is more fundamen-
tal than the nonlinear Schrödinger equation. The nonlinear
Schrödinger equation can be derived from it assuming that a
single polarization state is launched into the fiber and the
light remains in a single polarization state as a function of
time at any distance z along the fiber, although this state can
�and typically does� change as a function of z. Given this
equation’s importance in optical fiber applications it has been
the subject of a large amount of work. Its soliton solutions, in
particular, have been studied using a combination of analyti-
cal and numerical techniques, including perturbation theory
and the shooting method �5–8�.

Despite all this work, important fundamental questions
concerning the soliton solutions to Eq. �2� remain unan-
swered. Equation �1� is an integrable system that can be
solved using the inverse scattering transform technique. An
important consequence is that it has soliton solutions that are
stable in the sense that permanent solitary wave solutions
exist that propagate indefinitely. These soliton solutions are
such that �u�z , t��2 only depends on the variable combination
t−�z, where � is a group velocity parameter, rather than on
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t and z separately. The parameter � may always be made
zero by a translation of t and the phase of u. Hence, we may
refer to these solutions as stationary. This soliton solution is
one member of a family of stationary solutions, each of
which consists of a periodic train of pulses such as would
emerge from a passively mode-locked laser �3�. A second,
important sense in which the soliton solutions of Eq. �1� are
stable is that they are embedded in a family of stationary
solutions, all of which have a fixed periodicity.

By contrast, Eq. �2� is not integrable except in the special
cases �=0 and �=1 or when the initial conditions are suit-
ably restricted �9�. As a consequence, it has chaotic solutions
�9�. Under these circumstances, one might question whether
permanent soliton solutions exist at all. If we consider, for
example, a perturbed version of the nonlinear Schrödinger
equation

iuz +
1

2
utt + i�uttt + �u�2u = 0, �3�

where � is a small parameter, then it is possible to construct
a soliton solution to Eq. �3� to all powers in �. Moreover,
computational results show a sharp threshold in � below
which there is no sign of instability. Nonetheless, Wai et al.
�10� have shown that this soliton radiates “beyond all orders”
and there is, strictly speaking, no permanent soliton solution.

Yang �8� has found soliton solutions to Eq. �2� using the
shooting method and has demonstrated that they are stable
when � is sufficiently close to 0 or 1 in the sense that they
are permanent solitons, such as the soliton solution to Eq.
�1�. One purpose of this paper is to demonstrate for non-
trivial � ��=2/3� in one important instance that the soliton
solutions found by the shooting method are in fact stable in
the sense that they are permanent solitons. We will also elu-
cidate the physical reasons that this stability is expected to be
generic.

The second purpose of the paper is to demonstrate that
these solitions are not stable in the sense that they are em-
bedded in a family of chaotic stationary solutions. These
chaotic solutions come arbitrarily close to the soliton solu-
tions in a well-defined phase space. Thus, we may truly say
that these solitons exist in the midst of chaos.

The remainder of this paper is organized as follows. In
Sec. II we review the theory of stationary solutions to Eq. �1�
in a form that will be of use in the remainder of the paper. In
Sec. III, we derive the ordinary differential equations that
govern the stationary solutions and describe some of their
properties. In Sec. IV we show how to obtain soliton solu-
tions using the shooting method and demonstrate in one non-
trivial instance that this solution is a permanent soliton. We
discuss the physical reasons that the stability is expected to
be generic. In Sec. V we use surface of section plots to
demonstrate the existence of chaos in the neighborhood of
solitons, and we demonstrate that the Lyapunov exponent
associated with the soliton solutions is nonzero. Section VI
contains the conclusions.

II. SOLITON SOLUTIONS TO THE NONLINEAR
SCHRÖDINGER EQUATION

We are interested in solutions to Eq. �1� in the form

u�z,t� = f�t − �z�exp�− i�t + ikz� . �4�

These solutions are the simplest in a large family of quasi-
periodic solutions to the nonlinear Schrödinger equation
�11�. We first note that any such solution may be translated
into a solution of the form

u�z,t� = f�t�exp�ikz� , �5�

and hence it is sufficient to consider solutions in the latter
form. The equivalence of the two solution forms is supported
by the transformation

� =
�

k
t + z, � = t − �z . �6�

This change of variables does not change the partial deriva-
tives of u with respect to t and z,

utt = u��, uz = u�, �7�

which satisfies Eq. �1� in the new variables. Hence, going
back to the old notation, we can simplify the problem by just
looking at solutions of the form shown in Eq. �5�.

Substituting Eq. �5� into Eq. �1� we obtain

− kf +
1

2
f tt + f3 = 0, �8�

where f = f�t� is the z-independent envelope of u�z , t�. Inte-
grating the previous equation we have

H = − kf2 +
1

2
f t

2 +
1

2
f4, �9�

with H a suitably chosen constant of integration. We will use
H as the Hamiltonian of a dynamical system described by
Eq. �8�. To make the Hamiltonian structure clear, we denote

q = f , p = f t, �10�

where q and p are the generalized coordinate and momentum
of our system. In the new notation H verifies Hamilton’s
equations so that Eq. �9� defines H as the Hamiltonian of a
dynamical system with

qt = p , �11a�

pt = 2kq − 2q3, �11b�

H =
1

2
q4 − kq2 +

1

2
p2. �11c�

We are looking for real solutions of this system, and hence
values of H for which both q and p exist and are real. We
rewrite Eq. �11c� as

H = F�q,k� +
1

2
p2. �12�

Figure 1 shows F�q� for k�0. We will only present this
case, since the case k�0 is practically equivalent to the case
in which H�0, as presented below. As we can see there are
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three separate cases in which real solutions to the Hamil-
tonian system in Eq. �11� exist, corresponding to 0�H�
−k2 /2, H�0, and H=0. The equation

qt
2 = 2H + 2kq2 − q4, �13�

which is simply a restatement of Eq. �9�, can be solved in
terms of Jacobi elliptic functions �12� to yield the solutions

q = ± Adn�At�m1� , �14a�

q = ± A sech�At� , �14b�

q = Acn„�2�k2 + 2H�1/4t�m2… , �14c�

where we have used

A = �k + �k2 + 2H�1/2, �15a�

m1 =
2�k2 + 2H

A2 , �15b�

m2 =
A2

2�k2 + 2H
. �15c�

The solutions in Eqs. �14a�–�14c� correspond to the three
cases mentioned above, 0�H�−k2 /2, H�0, and H=0, re-
spectively, as can be seen from Fig. 1. The solution in Eq.
�14c� can be obtained by setting H=0 in the other two solu-
tions. This solution is of particular interest to us, since it
represents the soliton solution of the equation. For reasons
that will become evident later, we present in Fig. 2 the phase
space profile for the dynamical system defined by Eq. �11�.
Note that the soliton solutions lie on homoclinic trajectories,
separating the solutions presented in Eq. �14a� from the so-
lutions presented in Eq. �14c�. Figures 3�a�–3�c� show the
same trajectories plotted in the time domain.

As a conclusion to this section we note that we found
soliton solutions to Eq. �1� in the form

u�z,t� = ± A sech�At�exp�i
A2

2
z� . �16�

We also noted the special role played by the soliton solutions
as separatrices in the phase space of our dynamical system.

III. BIREFRINGENT FIBER EQUATIONS

As shown in previous works �5,13� light propagation
through a birefringent optical fiber is governed by two
coupled nonlinear Schrödinger equations, presented in Eq.
�2�, with z and t the normalized distance and time �5�. When
�=0 the two equations decouple into two separate one-
dimensional nonlinear Schrödinger equations, each of them
analytically integrable with soliton solutions. This case cor-
responds to the absence of birefringence. Also, for the case
�=1, Manakov �14� showed that the system is integrable by
using the inverse scattering method and found a whole fam-
ily of solutions. Numerical work and Painlevé analysis indi-
cate that these are the only values of � that yield an inte-
grable system �15�.

For practical purposes, however, it is useful to understand
the behavior of these equations for other values of �. In these
cases numerical methods prove useful in determining the ex-
istence of soliton solutions and their nature. To integrate the
equations numerically we consider solutions of the form

u�z,t� = f�t�exp�ik1z� , �17a�
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FIG. 1. The graph of F�q� from Eq. �12� shown at k=1/2. The
dotted horizontal lines correspond to different values of H, each of
them illustrating a different region of similar solutions to Eq. �9�: a
and a� correspond to H� �−k2 /2 ,0�, b and b� correspond to H=0,
and c corresponds to H�0.
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FIG. 2. A phase space diagram of the system in Eq. �11� with
trajectories corresponding to the values of the Hamiltonian pre-
sented in Fig. 1: a and a� correspond to H� �−k2 /2 ,0�, b and b�
correspond to H=0, and c corresponds to H�0. The actual values
are H=−0.05, H=0, and H=0.05. A time domain representation of
the solutions corresponding to the trajectories can be seen in Fig. 3.
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FIG. 3. The time domain representation of several solutions of
Eq. �11�, corresponding to the phase space trajectories shown in
Fig. 2. The same numerical values are used. Note that the soliton
solution in �b� corresponds to a homoclinic trajectory in Fig. 2.
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v�z,t� = g�t�exp�ik2z� , �17b�

where f and g are two real functions, and k1 and k2 are two
real parameters. Substituting Eq. �17� into Eq. �2�, we obtain

f tt − 2k1f + 2�f2 + �g2�f = 0, �18a�

gtt − 2k2g + 2�g2 + �f2�g = 0. �18b�

In order to have solutions decaying as t→ ±	, the param-
eters k1 and k2 must be positive. Also, it is not necessary to
investigate all possible combinations of k1 and k2, as a
simple scaling from t to t /�k1 shows that we can set k1=1
without any loss of generality �8�.

In order to numerically integrate the system, it is useful to
transform Eq. �18� from second order to first order ODEs.
We close by considering the two functions f and g and their
derivatives f t and gt as generalized coordinates and momenta
in a dynamical system

q1 = f , p1 = f t, q2 = g, p2 = gt, �19�

where q1, p1, q2, and p2 are the generalized coordinates and
momenta. The notational transformation in Eq. �19� leads to
the Hamiltonian

H =
1

2
p1

2 +
1

2
p2

2 − k1q1
2 +

1

2
q1

4 + �q1
2q2

2 − k2q2
2 +

1

2
q2

4,

�20�

and thus Hamilton’s equations of this system are

q1t = p1, �21a�

q2t = p2, �21b�

p1t = 2k1q1 − 2�q1
2 + �q2

2�q1, �21c�

p2t = 2k2q2 − 2��q1
2 + q2

2�q2. �21d�

If we impose the condition that solutions decay at infinity
�pulse solutions�, the Hamiltonian of the system must equal
zero,

H = 0. �22�

This observation is important, as our focus is the soliton
solutions, and we will therefore only analyze systems with
H=0. Also, in all the computations presented here we chose
the value �=2/3, since it is of importance in birefringent
optical fibers. Very similar results are found for all other
values of � in the range �0,1� that we investigated.

At the same time, we note that almost all solutions that we
will be finding, even though H=0, do not decay to zero as
t→ ±	. As a consequence, the instability of the soliton so-
lutions that we will observe cannot in general be used to
infer that Eq. �2� will be unstable once boundary conditions
such as u�z , t�→0 as t→ ±	 are imposed. Different methods
must be used for that purpose �1,2�.

IV. EXISTENCE OF SOLITON SOLUTIONS

Before starting the search for numerical soliton solutions
to Eq. �21� we should ensure that these solutions exist. What

follows is an argument that shows that at least one class of
these solutions does indeed exist and also gives useful infor-
mation about the algorithm to find them.

One class of solutions we will be looking for is symmetric
pulses. These are the simplest to describe since the only con-
dition is that the generalized momenta vanish simultaneously
at t=0. If this holds true, then it follows from the symmetry
of Eq. �21� that the solution will be symmetrical with respect
to the t=0 axis. As we have discussed in the previous sec-
tion, we are interested in solutions that vanish as t→ ±	. Let
us consider t→−	 and impose that q1 and q2 vanish in this
limit. We then find that the nonlinear terms in Eq. �21� dis-
appear and the resulting solutions as t→−	 must satisfy

q1�t� → c1 exp��2k1t� , �23a�

q2�t� → c2 exp��2k2t� , �23b�

where c1 and c2 are constants. Our goal is to find c1 and c2,
such that the solution to Eq. �21� yields p1�0�=0 and p2�0�
=0. If such c1 and c2 exist, then we will have shown that Eq.
�21� has a soliton solution that is symmetric about t=0.

To determine c1 and c2, we consider the contour plots of
the functions p1�t=0,c1 ,c2� and p2�t=0,c1 ,c2�, shown in
Figs. 4�a� and 4�b�. The plots were obtained numerically us-
ing an adaptive step-size fifth order Runge-Kutta method,
starting at t=−10 and integrating toward zero with the initial
conditions from Eq. �23�. The parameter values are k1=1,
k2=0.7, and �=2/3. We see in Fig. 4�c� that the curves for
p1�0�=0 and p2�0�=0 intersect, so that there indeed exists a
pair of values of c1 and c2 that will generate a symmetric
soliton. To find the numerical values of the zero crossing of
p1 and p2 we use a shooting method in which we search for
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FIG. 4. Argument for the existence of a symmetric soliton so-
lution to the coupled nonlinear Schrödinger equation in the case
k1=1, k2=0.7, and �=2/3. �a� Contour plot of the difference be-
tween p1�t=0,c1 ,c2� when integrating from the left and its value
when integrating from the right based on initial asymptotic coeffi-
cient pairs for the first normal mode; �b� similar contour plot for the
second normal mode; �c� zero-level contours for both normal
modes, with an intersection at c1=2.69 and c2=1.07; �d� the soliton
corresponding to the initial conditions in �c�.
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zeros of p1
2+ p2

2 as a function of c1 and c2. This argument can
be extended to cases that are not symmetric about t=0 by
using a different function of the two variables and applying
an appropriate zero-finding algorithm.

In this case, the shooting method consists of picking two
initial points, one at a negative t value and one at a positive
t value. Integrating both toward zero we obtain two different
sets of values for the variables at t=0. We then consider the
difference in these final values as a function of the initial
conditions. Applying a Newton-Raphson minimization algo-
rithm on the resulting difference, combined with a good ini-
tial guess, will result in a convergent solution of the system
of equations. In order to find the soliton solutions, it is useful
to impose that the starting points comply with the asymptotic
relations for large �t�, not unlike in the previous existence
argument

p1 = �2k1q1, �24a�

p2 = �2k2q2. �24b�

The relations in Eq. �24� are a consequence of the soli-
ton’s exponential decay at t→ ±	. Figures 5 and 6 illustrate
several soliton solutions found through this method for dif-
ferent values of k2. The solid curves represent q1 while the
dotted curves represent q2.

Figure 5�a� shows a soliton solution in which the two
modes are equal, for �=2/3 and k1=k2=1. These solutions
can be found analytically, and may be written

q1 = q2 = � 2

1 + �
�1/2

sech�2t , �25�

which is in agreement with the numerical results. All other
cases that we found do not correspond to known analytical
solutions, although the solution shown in Fig. 6�a� can be
analytically approximated by a daughter-wave solution, as
shown by Yang �6�.

The validity—and, in one sense, the stability—of the so-
lutions yielded by the shooting method is supported by the
existence of solutions. The convergence of the Newton-
Raphson algorithm in certain regions, for multiple initial val-
ues in those regions, is a strong indication that our solutions
are valid, since we only deal with continuous functions.
Moreover, since the initial approximation in Eq. �24� was
such that we only look for soliton solutions, all instances in
which the algorithm converges correspond to an approxima-
tion of a soliton.

Concerning the permanence of such solutions it is useful
to first look at the solutions of Eq. �1�. The soliton solution to
this equation is shown in Eq. �16�, and its dispersion relation
is given by ksol=A2 /2. The dispersion relation for the linear
wave solutions of Eq. �1� is found by substituting exp�iklinz
− i�t� into Eq. �1� and ignoring the nonlinear term. We obtain
klin=−�2 /2, which implies that it will always be the case that
klin�0 while ksol�0. As a consequence the soliton will
never be in resonance with linear dispersive waves and en-
ergy will not be permanently transferred between the two.
This is the physical reason that a permanent soliton exists.
This situation is in contrast with that of Eq. �3� where the
linear dispersion relation is

klin = −
1

2
�2 − ��3, �26�

and for any value of k there is always an � such that k
=klin �15�. Thus, there is always a frequency at which linear
dispersive waves will resonate with the soliton, resulting in
radiation “beyond all orders” �10,16�. This reasoning is
purely heuristic and no replacement for a direct demonstra-
tion of either stability or radiation “beyond all orders.” How-
ever, it appears to work well in practice and provides physi-
cal insight.

We may apply a similar heuristic reasoning to the solu-
tions of Eq. �2�. The linear dispersion relations for Eq. �2� are

k1lin = k2lin = −
1

2
�2, �27�

and the wave numbers are always negative. Soliton solutions
of Eq. �2�, are expected to have wave numbers k1,2�0. For
example, if we look at the soliton solution in Eq. �25�, its
dispersion relation is
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FIG. 5. �Color online� Numerical solutions with �=2/3, k1

=k2=1. The solid and the dashed curves represent q1 and q2, re-
spectively, plotted vs the normalized time t.

−10 0 10
0

1

q 1,q
2 (a)

−10 0 10

−1

0

1 (b)

−10 0 10

−1

0

1

t

q 1,q
2

(c)

−10 0 10

−1

0

1

t

(d)

FIG. 6. �Color online� Numerical solutions with �=2/3, k1=1,
k2=0.7. The solid curve represents q1 and the dashed curve repre-
sents q2.
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k1sol = k2sol = �� + 1�
A2

2
, �28�

so that ksol�0 whenever ��−1. Yang �8� looked at this
solution in more detail, and found that soliton solutions are
permanent for positive values of �. He also presents several
other classes of solutions for which a very similar physical
argument indicates stability. The shooting method that we
use assumes k1�0 and k2�0 �see Eqs. �23� and �24�� and
thus can only find solutions that satisfy this condition. Thus,
it is reasonable to conclude that soliton solutions are stable in
the sense that they are permanent and do not radiate “beyond
all orders.”

V. SURFACE OF SECTION PLOTS

In order to better understand the existence and evolution
of the soliton solutions of Eq. �2�, we analyze the phase
space of the Hamiltonian system in Eq. �20�. Using the ana-
log of the one-dimensional system discussed in Sec. II, we
expect to find solitons as separatrices between different types
of oscillatory solutions. Using the adaptive step-size fifth or-
der Runge-Kutta method we integrate Eq. �21� from several
starting points, including the ones corresponding to the soli-
ton solutions found previously by the shooting method.

When integrating Eq. �21� numerically, we fix H=0 in
order to obtain soliton solutions, as mentioned previously.
Hence, one of the variables becomes a function of the other
three. The result is a trajectory that lies on a three-
dimensional energy surface in a four-dimensional phase
space. Representing the curve in the four-dimensional space
would be confusing and hard to interpret. To solve this prob-
lem we look at sections through the space, which render
two-dimensional figures that are easier to generate and inter-
pret, called Poincaré surfaces of section �18�. To obtain such
a section we start integrating Eq. �21� forward in time from a
particular initial point. Every time q2 reaches a certain cho-
sen value Q with p2�0, we plot the values of q1 and p1,
ignoring p2. We thus obtain a section of the phase space,
rendering an image similar to a two-dimensional phase plot.
The value of the initial p2 was computed from Eq. �20� im-
posing the condition H=0.

The boundaries of the space are found from Eq. �20� with
the observation that, in order to maximize p1, we have to
take p2=0. The boundary is then given by

p1 = �
 sin � , �29a�

q1 = ± ��
 cos � + ��1/2, �29b�

� � �− arccos�− �/�
�,arccos�− �/�
�� , �29c�

where


 = ��2 − 1�Q4 + 2Q2�k2 − k1�� + k1
2, �30a�

� = k1 − �Q2. �30b�

The parameters 
 and � are constants, dependent on the
equation parameters and the value at which the section is
taken. Thus, we cannot take such a section at a value of Q
that will generate a negative 
. Such a choice of Q would be
outside of the phase space of the problem.

In Figs. 7�a� and 8 we present two surfaces of section. We
again set �=2/3. Results for other values of � are similar
qualitatively except for the integrable cases �=0 and �=1
�14�. The marked points represent the solitons determined in
Figs. 5 and 6. Since these solutions decay as t→ ±	, they do
not intersect the plane at more than a small number of points.
However, all other points on the plots are found by integrat-
ing trajectories that are close to the solitons. Figures
7�b�–7�d� are magnified to show more detail around the in-
tersections of the soliton solitions with the surfaces of sec-
tion. What is remarkable is that every soliton is surrounded
by chaotic regions. Each soliton is, in fact, placed at an in-
tersection of boundaries of chaos, as shown in Fig. 7�b�. In
this case the thickness of the chaotic regions is small com-
pared to the dimension of the phase space, and the behavior
of the trajectories seems to indicate that proximity to a soli-
ton trajectory implies instability. A trajectory will follow a
regular path for a long time far away from the soliton trajec-
tory, but when it eventually comes close to it in phase space
the strong instability pushes it away, thus generating the cha-
otic pattern seen in Figs. 7�c� and 7�d�. This can be under-
stood intuitively when compared to the homoclinic trajecto-
ries in the phase space of the Hamiltonian of Eq. �1�. The
solitons in this case act as bridges between different regions
of chaotic behavior. In Fig. 8, which corresponds to k1�k2,
we can see the chaotic behavior even without any magnifi-
cation. The solitons in this case exist in the midst of chaos.
The thickness of the chaotic region suggests a higher degree
of instability of these solutions than of the previous ones. We
proceed by quantitatively determining this difference through
a linear stability analysis.

In order to confirm that the regions surrounding these
soliton trajectories are chaotic we performed a linear stability
analysis of the numerical solutions we obtained with the
shooting method. To do this we calculated the Lyapunov ex-
ponent �17� by integrating both the original solution and a
nearby, perturbed trajectory; the average of the normalized
perturbation over the time elapsed was plotted. We expect
the Lyapunov exponents of unstable trajectories to level off
while those of stable trajectories will tend to zero.

In Fig. 9 we show the Lyapunov exponents for the soli-
tons solutions obtained in the previous section. For reference
we have also plotted the result of our analysis on a soliton
that is known to be stable from previous analytical investi-
gation of the Manakov equations and also an oscillatory so-
lution of Eq. �21�. While the Lyapunov exponent of these
latter solitons tends to zero, those of the solitons found in the
case �=2/3 level off eventually, indicating that they are in-
deed surrounded by chaos and that small perturbations of the
trajectories in these areas increase exponentially. Also, the
Lyapunov exponents are lower in the case k1=k2 than in the
case of distinct k1 and k2. This is consistent to our observa-
tion that the chaotic regions in the former system are thinner
and more interspersed with isles of stability. The Lyapunov
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exponents of all solitons in Fig. 5 tend to the same value,
indicating that, just as in Fig. 8, all the chaotic regions sur-
rounding the islands of stability in Fig. 7 are, in fact, one
extended region of connected trajectories. However, due to
the lesser degree of instability of this region it is harder to
make this observation directly from the surface of section
plots.

VI. CONCLUSION

In this paper we reduced the coupled nonlinear
Schrödinger equations to a fourth order �two degree-of-
freedom� Hamiltonian system using an ansatz that focused

on stationary solutions of the original equations. We then
applied standard dynamical methods to this reduced system.
We showed that soliton solutions that decay exponentially as
t→ ±	 exist, and we found several of them through a shoot-
ing method and argued for their permanence. Thus, solitons
are stable in the sense that they are permanent, rather than
radiating “beyond all orders.” Using Poincaré surfaces of
section, we analyzed the dynamical behavior of the phase

FIG. 7. �Color online� Sur-
faces of section taken at q2=0.4
with �=2/3, k1=k2=1. �a� The
entire phase space section is pre-
sented; �b� a magnification in the
neighborhood of two of the soli-
ton trajectories; �c� and �d� further
magnifications with the soliton so-
lution intersects in the middle of
the figure. The solitons in �c� and
�d� are placed at the intersection
of the marker lines, dashed for the
soliton in Fig. 5�a� and solid for
the one in Fig. 5�b�. The diamonds
and the crosses in �a� mark the in-
tersections of the solitons in Figs.
5�c� and 5�d�, respectively.
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FIG. 8. Surface of section taken at q2=0.4 with �=2/3, k1=1,
and k2=0.7. The soliton intersections represented by a circle, rect-
angle, upper triangles and lower triangles correspond to Figs. 6�a�,
6�b�, 6�c�, and 6�d� respectively. They are located in the same re-
gion of visible chaos.
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FIG. 9. �Color online� Linear stability analysis showing average
normalized deviation vs time. The dotted lines correspond to soli-
tons in the k1�k2 case �Fig. 6� and the dashed lines to solitons in
the k1=k2=1 case, as in Fig. 5; the solid lines represent a soliton
solution of the Manakov system �14� �triangles pointing left� and a
regular oscillatory solution of the �=2/3, k1=k2=1 system �tri-
angles pointing right�.
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space in which these solitons exist. We found that, when �
=2/3, the solitons are surrounded by chaotic regions. Thus,
the soliton solutions resemble the homoclinic trajectories that
are found in the second order Hamiltonian system �one
degree-of-freedom�. A Lyapunov stability analysis showed
that soliton solutions to the coupled nonlinear Schrödinger
equations are unstable in the dynamical sense. We conclude
that although permanent soliton solutions to the coupled

nonlinear Schrödinger equations exist for nonintegrable
cases, they exist in the midst of chaos.
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