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We study theoretically the effect of an intracavity etalon on actively mode-locked fiber lasers by solving the
master equation for the laser when nonlinearity in the laser is negligible. The first-order dispersion of the
material inside the etalon can increase the pulse duration by a factor of 10. The minimum pulse duration is
obtained when the relative frequency offset between the free spectral range of the etalon and the modulation
frequency of the active mode locking is of the order of 10~2. The group-velocity dispersion of the material inside
the etalon as well as the finesse of the etalon affect the total cavity dispersion. The etalon helps to suppress
both a simultaneous lasing in several supermodes and lasing in higher-order pulse modes of the master equa-
tion. The etalon also helps lock the central wavelength of the laser to the etalon comb. © 2007 Optical Society
of America
OCIS codes: 140.4050, 140.3510, 060.2310, 050.2230, 140.3410.

1. INTRODUCTION

Actively mode-locked fiber lasers are important pulsed
sources due to their ability to generate a train of short
pulses with a high repetition rate and a very low jitter
[1-3]. To improve the performance of fiber lasers, one
must reduce the noise, stabilize their operation, and
eliminate pulse dropout. One of the methods to stabilize
actively mode-locked fiber lasers is to use an intracavity
Fabry—Perot etalon [4-7].

The effect of an intracavity etalon on the pulses of an
actively mode-locked fiber laser has been studied experi-
mentally [4-7]. A theoretical study of a laser with an int-
racavity etalon is given in Ref. [7]. However, in this work,
the effect of the cavity dispersion and the dispersion of
the material inside the etalon was not taken into account.
The work was also based on assuming a Gaussian pulse
profile, rather than obtaining all the possible pulse modes
by solving a master equation. In Ref. [8], the effect of an
intracavity etalon on a pulse’s duration was theoretically
studied. However, the assumption in this work was that
the bandwidth of a single etalon mode is large compared
with both the axial mode spacing of the laser and the
pulse bandwidth. In a fiber laser that generates short
pulses of the order of 10 ps with a repetition rate of a few
gigahertz, the mode spacing of the etalon is approxi-
mately equal to mode spacing between the laser modes
[4-T7] as studied in this paper. We also show that the ma-
terial dispersion inside the etalon that was neglected
plays an important role in determining the pulse duration
in fiber lasers.
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In the present paper, we theoretically study a laser that
contains an intracavity etalon by deriving and solving an
appropriate master equation that includes terms that are
due to the intracavity etalon. The solution of the master
equation gives the dependence of the pulse duration on
the parameters of the etalon assuming that nonlinearity
is negligible. In particular, we show that the first-order
dispersion caused by the etalon material significantly in-
creases the pulse duration. We show that the minimum
pulse duration is obtained when there is a small detuning
of the order of 1% between the free spectral range of the
etalon and the frequency difference between the laser
modes. We also show that the group-velocity dispersion of
the material inside the etalon and the etalon finesse
should be taken into account when calculating the cavity
dispersion. Therefore, the insertion of the etalon may in-
crease or decrease the pulse duration, depending on the
sign of the second-order etalon dispersion. The etalon
helps to suppress a simultaneous lasing in several super-
modes as well as suppressing lasing in higher-order pulse
modes of the master equation. The etalon also helps to
lock the center frequency of the laser. Therefore, the use
of an intracavity etalon eliminates the need to control the
length of the laser cavity, which is required when the la-
ser is locked to an external etalon [9]. The filtering from
the intracavity etalon can be more than three times stron-
ger than the filtering from an external etalon with the
same finesse. By appropriately choosing the cavity disper-
sion, the etalon finesse, and the dispersion of the material
inside the etalon, the minimum pulse duration can be
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equal to the Kuizenga—Siegman limit of a laser without
dispersion [8].

The paper is organized as follows. In Section 2, we de-
rive the master equation for a laser with an intracavity
etalon. The master equation is solved in Section 3. The ef-
fect of the etalon parameters on the pulse duration and on
the suppression of higher-order lasing modes is analyzed
using numerical examples in Section 4. In Section 5, we
show that the etalon helps to suppress simultaneous las-
ing in several supermodes. We determine the optimal eta-
lon finesse and the optimal detuning between the free
spectral range of the etalon and the spacing between laser
modes that are required in order to obtain a large sup-
pression of supermode competition without a significant
increase in the pulse duration.

2. MATHEMATICAL MODEL FOR THE
LASER

Our mathematical model of the laser is similar to the
master-equation model developed by Haus [10]. A sche-
matic of an actively mode-locked ring fiber laser is shown
in Fig. 1. The laser uses an erbium-doped fiber amplifier
with a broad bandwidth and a slow relaxation time, of the
order of hundreds of microseconds. The laser cavity also
includes an optical filter, a sinusoidally varying ampli-
tude modulator at a frequency ();;, an isolator for obtain-
ing a unidirectional oscillation, a fiber with a length L,
and a Fabry—Perot etalon with a free spectral range (),
and a finesse F. To obtain the optimal performance of the
laser, we assume that the modulation frequency, Q/27,
is equal to the inverse of the round-trip time of a pulse
inside the cavity multiplied by an integer number. This
condition can be met in fiber lasers by using a tunable de-
lay line connected to an electro-optic feedback circuit [1].
We denote the gain and the FWHM of the gain profile by
g and 2(),, and we denote the loss and the FWHM of the
optical filter by K and 2Qk, respectively. The central fre-
quency of the amplifier is denoted by w,. We also assume
that the central frequency of the optical filter is equal to
the central frequency of the amplifier, as is required to ob-
tain short pulses.

A. Spectral Transfer Function of the Etalon

The spectral transfer function of an etalon built up from
two equal mirrors, with an intensity reflection coefficient
R, is a periodic function of the frequency [11,12]

Isolator

Fig. 1. Schematic of the laser cavity that is analyzed in this pa-
per. EDFA, an erbium-doped fiber amplifier.
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(1-R)exp(i¢/2)

Tr(wior) = I Rexpie) (1)

where w,; is the angular frequency, ¢=2wn(wi)l/c is
the phase accumulated in one round trip, n is the refrac-
tive index of the material inside the etalon, ¢ is the light
velocity, and [/ is the etalon length. The exponent in the
numerator of Eq. (1) is equivalent to propagation through
a dielectric slab with a length [ and a refractive index n,
and it can therefore be omitted from the transfer function
and put back elsewhere. In this case, the transfer func-
tion of the etalon becomes Tx(wiy)=Tr(w)exp(—ig/2).
The optical spectrum of laser pulses is built from modes
at discrete frequencies,

Wit = W + 6w + NQ, + NAQ, (2)

where AQ=0y,-Q,, N=0,+1,+2 ... is an integer, (),
=mc/ln(wy) is the free spectral range of the etalon at a fre-
quency wg, and wy is the resonance frequency of the etalon
that is closest to the central frequency of the laser ampli-
fier, w,. The FWHM of an etalon mode is equal to (,/F
where F=m\|R/(1-R) is the etalon finesse [12]. The fre-
quency offset dw is the frequency detuning of the laser fre-
quency comb relative to the etalon comb at N=0. Figure 2
illustrates the notation used in Eq. (2).

The width of the etalon modes is significantly greater
than the width of the laser modes. Experimental results
indicate that the width of the laser modes is of the order
of a few kilohertz [13,14]. On the other hand, the width of
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Fig. 2. Schematic of the etalon modes (dotted curve) and the
modes of the laser (solid line) when (a) Sw=0, (b) éw# 0. The pa-
rameter N is the mode number. The dashed—dotted curve repre-
sents the etalon filtering.
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the etalon modes is of the order of tens of megahertz.
Therefore, we will calculate the transfer function of the
etalon only at the frequencies of the laser modes.

To obtain narrow pulses and avoid a significant in-
crease in the cavity loss, the frequency offsets dw and A
should both be small compared with the width of the eta-
lon modes, so that dw, AQ<Q,/F, as shown in Fig. 2. In
actively mode-locked lasers, the pulse bandwidth is al-
ways smaller than the carrier frequency, and hence
IN maxlQas < @p. In the numerical example given in Section
4, we use N\y=1.55um, wy=1.2x10"rad/s, Qu/27
=10 GHz, an etalon finesse F'=100, from which we obtain
IN axl = 3.2, 2|N pax Q. =4 X 10 rad/s, AQ/Q,~0.01, and
Sw/Q,~10"*. These values correspond to experiments
[4-7]. Hence, we may use the ordering,

Wit = € Ly + NQ, + €( 5w + NAQ), (3)

where € is an ordering parameter, which we will eventu-
ally set equal to 1. As usual in this sort of expansion, the
ordering parameter is used to keep track of the relative
magnitude of components. Terms proportional to higher
powers of € are smaller than those at lower power. We will
take into account in our calculations the effect of the ma-
terial dispersion inside the etalon up to second order in
the frequency difference, wi,;—wo. We choose to use a
single ordering parameter for the changes in both the re-
fractive index and the frequency. Since |N . Qi < 0y, wWe
obtain

n(w) =ng+ E€y[NQ, + e(dw + NAQ)]
+ Ey[NQ, + e(dw + NAQ)?, (4)

where n(w) is the refractive index of the material inside
the etalon, y,=dn/dwytls, 72= (1/2)d2n/dwt20t|wo. For
bulk fused silica at A=1.55 um, we obtain ny=1.44, y, 0,
=1.86x1072, ,0,=9.6X10"7,  yywQ,=-1.22X 1076,
1202=-6.3x 10711, and |(y1/n0)/ (y5/1)|=0.01.

The accumulated phase in the etalon ¢, given in Eq. (1),
can be decomposed into successive orders,

e=€lo 1+ @+ €01+ €0y, (5)
where

21
¢_1=—nowy=2mm, (6a)

c

21
@g=—noNQ,=27N, (6b)

c

21
¢1=—no(dw+Nh), (6¢)

c

21

#2=—[n100(80 + NAQ) + (7 + yp00)

X (N€Q,)?], (6d)
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h=A0+ Qe‘)/lwo/no, (69)

and m is an integer. The parameter & denotes the differ-
ence between the free spectral range of the etalon and the
frequency difference between the laser modes. The second
term in the parameter i describes the effect of the disper-
sion of the material inside the etalon on the free spectral
range of the etalon. The result obtained for ¢_; and ¢,
gives the etalon resonance condition.

By substituting the Taylor expansion given in Eq. (5)
into Eq. (1), we obtain

r P 2 #P 202
= 1 _ - R
wle)=1+ N ¢=0(6¢1+ @) + 2 9 ¢=0(6¢1+ ®2)
| 2
\JJR ¢1
=1+ 5 (egy + E¢y) — €J(1 +R)§+O(e3), (7)

where J is the finesse coefficient, given by J=4R/(1-R)2.
By substituting Eq. (6) into Eq. (7), we obtain

Tg(wior) = Py + Pre+ Pyé?, (8)

_ 2ln0 ZZI’LO

Pl = ZCZ — |bw | + lCQ — A N,
C Cc

— zlno 21n0 2

P2 = lCZ — (')/1/n0)w0Aw + Cl — (5(.0)2
C c

2ln0 21n0 2
+ l02 (yl/no)w0m+ Cl — | 2hdw |N
C

¢
. Zlno 9
+]1Cy - [(y1 + @ y2)/no)Q2;

ZZTLO 2
+Cl(_> h2 NQ, (9)

c

with C;=-J(1+R)/8 and Cy=JR/2.
Equation (8) can be ordered as

Tg(N) = Py + PN + P,N?, (10)

_ J(1+R) VIR 21
P0= 1- T(2lﬂ0/€)25(1)2+i _((1)0'}/15(1)"'77,05(1)),
c

_ JA+R) VIR 21
Pl =- T(2lno/c)22h Sw+1 _(hno + wo')/lAQ),
C
. J(1+R) JJR 21
P,=- T(Zlno/c)2h2 +i —(y + woye) Q2. (11)
C

From here on, we set e=1.
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B. Master Equation for Pulse Spectrum
The field in the laser cavity is built from a train of pulses,

E(T,t)= >, a,(T,t —-mTyy), (12)

where T, is repetition rate of the pulses, T,=27/Qy, T is
a slow time variable of the order of the cavity round-trip
time, ¢ is a fast time variable of the order of the pulse du-
ration, and a,,(T,?) is the field envelope of the mth pulse
defined around a reference frequency that is equal to the
frequency of the laser mode at wy+ dw. Without the etalon,
the master equation is developed for a pulse with a car-
rier frequency that is equal to the central frequency of the
amplifier gain, w,. However, since the bandwidth of the
filter and the amplifier are significantly broader than the
free spectral range of the etalon and the modulation fre-
quency of the laser, the effect of the frequency difference
ws—(wo+ 6w) on the parameters of the master equation
can be neglected. In the example given in Section 4, the
modulation frequency and the free spectral range of the
etalon are approximately equal to 27X 1010 rad/s, while
the bandwidths of the amplifier gain and the filter are
equal to ,=5.5X 102 and Qg=3.9x 102 rad/s, respec-
tively. Therefore, the change in the filter loss due to the
frequency difference w,—(w+ dw) is less than 6x 1075,

We neglect in our analysis the nonlinear Kerr effect.
This neglect enables us to obtain a simple solution and it
is justified since the pulses that were experimentally ob-
tained in fiber lasers with an intracavity etalon had a
broad duration of ~10-100 ps [4-7]. The master equation
for the mth pulse of the pulse train is given by

g K\#a,T
=(g-90a,,(T,t)+ lD+Q_§+Q_?{ T

- M[1 - cos(Qyt)]a,,(T,t) + w,,(T,¢), (13)

da,(T,¢t)

BT

where §is the laser loss per a single round trip, Ty is the
round-trip time, D is the overall cavity group-velocity dis-
persion coefficient (D>0 represents the anomalous dis-
persion region), M is the modulation depth, and (), Q, g,
and K are the FWHM and the gain and loss of the ampli-
fier and the filter, respectively. We are using the negative
carrier frequency convention. The filter loss that is fre-
quency independent is included in the constant loss &.
The pulse duration is significantly shorter than the period
of the mode locking, T3,=2m/Q);;, and therefore the trans-
mission of the modulator can be approximated by M[1
—cos(Qyt)]|=M(Qyt)%/2. The function w,,(T,t) represents
the response of the etalon. When the dispersion of the ma-
terial inside the etalon can be neglected the change in the
mth pulse due to the etalon is given by

w,(T,t)=(1-R) >, Ra,, [Tt -j(Ty~T,)]-au[Tt],
Jj=0
(14)

where T,=21/(cn) is the round-trip time of a pulse in the
etalon. Equation (14) shows that in the time domain, the
etalon couples neighboring pulses. The number of pulses
that are coupled is approximately equal to the finesse of
the etalon.
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The effect of the etalon on the laser may be analyzed in
the frequency domain, allowing us to include the effect of
dispersion inside the etalon. Assuming that all the laser
pulses are the same, i.e., a,,(T,¢)=a(T,t), we can calcu-
late the transfer function of the etalon in the frequency
domain for one of the cavity pulses. To use Eqs. (1) and
(10) for calculating the etalon transmission, the lifetime
of a single pulse in the etalon must be smaller than the
effective round-trip time of the pulse in the laser cavity,
which will be true as long as the finesse of the intracavity
etalon is smaller than the number of pulses that simulta-
neously propagate in the cavity. For example, in a laser
with a cavity length of ~100 m and with a repetition fre-
quency of 10 GHz, approximately 5000 pulses simulta-
neously propagate inside the cavity, while the typical fi-
nesse of an intracavity etalon is only of the order of a few
hundred. Since the lifetime of a pulse in the etalon is ap-
proximately equal to FT,, we may neglect coupling be-
tween pulses that propagate a different number of round
trips in the cavity. On the other hand, since the etalon
causes coupling among a large number of pulses, the
pulses inside the cavity will be mutually coherent. Hence,
we obtain

w(T,t) = (1-R) Y, Rla[T,t —j(Ty - T,)] - a[T,t].
Jj=0

(15)

The first term in the right-hand side of Eq. (15) is equal to
the transfer function of etalon in the time domain when
dispersion is neglected. The effect of dispersion on the
etalon can be added in the frequency domain after mak-
ing a Fourier transformation of Eq. (15). The detuning be-
tween the etalon and the laser cavities Tj-T, is con-
verted in the frequency domain to a linear phase shift
that accumulates in one round trip. The effect of the first-
and second-order dispersion at wy+ dw can then be added.
The result reproduces Eq. (1), as expected. Using the ap-
proximate transmission of the etalon for the laser modes,
we substitute N=[wiy— (0o + dw)]/Qpr= w/Qy; into Eq. (10)
and obtain

TE((D)=P0+P1(1)+P2LU2,

w(T,w) =a(T,»)[Tp(w) - 1], (16)

where

B ) (17)
P,=—— (1=0,...,2). 17
(Qp)’
We note that o is the frequency difference, calculated
with respect to a reference frequency that is equal to the
laser mode at wy+ dw, and the pulse spectrum, a(T, w), is
the Fourier transform of the pulse profile a(T,?)

&(T,w):J dt exp(iwt)a(T,t). (18)

The master equation, written in the frequency domain,
becomes
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0a(T,w) M 2&26(T,w) _ g K
L) MT(DQ—Q—P>
X 0?@(T,w) +[g — 6+ Re(Py - 1)]a(T, w)
+ o Re(P)a(T, w). (19)

The parameters of the etalon, P;, i=0,1,2, are defined in
Egs. (11) and (17). The term Im(P,) gives the change in
the accumulated phase of the pulses, and, therefore, it
only slightly changes the effective cavity length. The
terms proportional to Re(P;) and Re(P;) describe the con-
stant and the linear frequency-dependent loss due to the
etalon. The real and the imaginary part of the term pro-
portional to Py describe the second-order loss and the dis-
persion caused by the etalon, respectively. We note that
the time T is determined by the group velocity V, of all
the cavity elements including the etalon. Hence, the con-
tribution from Im(P;) is included in T and does not ap-
pear separately.

3. SOLUTION OF THE MASTER EQUATION

In a practical fiber laser, the frequency difference between
the cavity modes is significantly smaller than the band-
width of the etalon modes. For example, in a ring laser
with a length of 100 m, the frequency difference between
two neighboring modes is 2 MHz. Assuming an etalon
with a free spectral range of 10 GHz and a finesse of F
=100, there should be ~50 laser modes inside a single
etalon mode. Therefore, in such a laser, we may set dw
~0 and hence Re(P;)=0. A solution of Eq. (19) when dw
#0 will be given in Section 5. In the case when Re(P;)
=0, the solution of Eq. (19) can be represented as a series
of Hermite—Gaussian modes,

~ w? T
a(T,w) = 2 Cm exp<_ _7§1>Hm(w7m)exp<_/\m> s
m=0 2 T

R
(20)
where H,,(x) are Hermite polynomials of the order of m,

¢,, is the mode amplitude, and the parameters 7,, and A,,
are obtained from the relations

Tfn =Wi/s, (21a)

Ap=8n— 8- (2m+1)\Ws, (21b)
where

M . gn K
s=—0y, W=—+—+iD-P,. 22
The inverse Fourier transform of the pulse spectrum is
equal to

” t2 T
a(T,t) = E ¢, exp| — F H, (t/7,)exp T—Am .

m=0 m R
(23)
Above the laser threshold, the net gain of the mth

mode, Re(A,,), should be equal to zero. If the laser ampli-
fier is homogeneously broadened, only the mode with the
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lowest net gain will be generated. In actively mode-locked
fiber lasers, based on an erbium-doped fiber amplifier, the
bandwidth of the amplifier is significantly broader than
the bandwidth of the pulses. Therefore, the amplifier gain
in our laser is mainly determined by the constant loss &
and by the etalon, as we show in the numerical example
presented in Section 4. Hence, the parameter W does not
strongly depend on the mode number. In this case, Eq.
(21b) shows that the minimum threshold gain is obtained
for the fundamental mode with m=0. The pulse param-
eter 7y obtained for this mode is given by

1 1 2 p _ Lﬁ 1/2 | 172
0=)—=S+||=—=| + , 24
°7 2027 | \202 s (24

where
. 1) K J(1+R)( )2 ) 1 @5)
P=—+——-——2Inyc)*h"—, 25
Q2 0% [o}#
A l 1 Im(Ap)
D=-D+ \JR-(y,0% + 0y y,Q%) — - ————.
v 0(71 e T @W0Y2 2)934 Q§

(26)

Equation (25) implies that the etalon adds an effective fil-
ter to the laser cavity that is represented by the last term
in Eq. (25). The etalon also adds an additional group-
velocity dispersion to the laser cavity that is represented
by the two final terms in Eq. (26). We note that the term
y1+woye is equal to  (2/¢)d*B(w)/dw?|,,, where B(w) is the
propagation wavenumber in the etalon.

4. NUMERICAL EXAMPLE

In our numerical example, we will consider a laser with a
configuration as described in Fig. 1 and with a modula-
tion frequency ;,/27=10 GHz, a modulation index M
=0.2, an accumulated group-velocity dispersion per round
trip D=0.13 ps?, and a constant loss 6=0.1. The amplifier
and the filter had a FWHM bandwidth of 20,=2X5.5
%X 1012 rad/s (20 nm) and 2Qx=2 X 0.7, (14 nm), respec-
tively. We consider an etalon that is made of fused silica,
so that the dispersion parameters are given by [12] y;wq
=0.0186, yowoQy=-1.22%X1075. The length of the etalon
is /=1 cm. We neglect the dispersion of the etalon mirrors.

We will present the chirped Gaussian pulses that are
generated by the laser using the notation [15]

(1+iC) ¢ }

a(t)=ag exp[— B T_g (27)
where T =|79|%/ (75— )2, 2T, is the pulse duration at 1/e
intensity points, C=-27z7;/ (7%3—7%) is the chirp param-
eter, Tp=Re(7y), 7=Im(7y), and 7 is the pulse parameter
obtained from Eq. (24). Figure 3(a) shows the dependence
of the chirp parameter C and the normalized pulse dura-
tion 27Ty/27,, where 27, is the Kuizenga—Siegman limit
[8], on the detuning between the etalon and the laser
modes, A}, for an etalon with a finesse F=100. The figure
shows that a minimum pulse duration is obtained when
the detuning AQ) between the etalon and the laser modes
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O 044l
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-0.02 -0.01

AQ/Q,

Fig. 3. (a) Pulse duration 27, normalized to the Kuizenga—
Siegman limit 27, and (b) the chirp parameter C, as a function of
the normalized frequency detuning between the etalon and the
laser modes, AQ/Qy,, for a laser with a modulation frequency
0y/27m=10 GHz, a modulation depth M=0.2, a total cavity dis-
persion D=0.13 ps?, a constant loss 6=0.1, and an intracavity
etalon with a finesse F'=100 and with material dispersion coeffi-
cients ;wy=0.0186, y5Qyw=-1.22X 1076,

does not equal to zero. When substituting the parameters
used to calculate Fig. 3 into Eqgs. (25) and (26), we find
that when AQ=0, the first-order dispersion of the etalon

material, y;, increases the parameters PandD by a factor
of approximately 10 and 1.1, respectively, with respect to

the case y;=0. The increase in the parameter P yields an
increase in the pulse duration by a factor of approxi-
mately 10. It is possible to compensate for the increase in

the parameter P due to the etalon material dispersion by
adding a detuning AQ ;.. Since in our example the gain
and the filter dispersion make a small contribution to the

parameter P, the detuning parameter that gives a mini-
mum pulse duration can be approximately calculated by
requiring that 2~=0 and hence AQ,;,/Q,=-y,w0/ 1.

It is necessary to detune the free spectral range of the
etalon relative to the frequency spacing between the laser
modes in order to obtain an optimal overlap between the
laser modes and the etalon modes. The frequency spacing
between the laser modes is almost independent of the fre-
quency. On the other hand, the frequency spacing be-
tween the etalon modes depends on the frequency due to
the dispersion of the material inside the etalon. The de-
tuning between the etalon and the laser modes is needed
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to compensate for the first-order dispersion of the mate-
rial inside the etalon.

The minimum pulse duration of 27)=9.4 ps obtained in
Fig. 3 is longer than the 6 ps Kuizenga—Siegman limit [8]

because the dispersion parameter of the laser D does not
equal zero. Equation (26) shows that the dispersion pa-

rameter D depends on the total cavity dispersion D as
well as on the dispersion added by the etalon. The etalon
dispersion is affected by the dispersion of the material in-
side the etalon and it increases as the finesse of the etalon
increases. Therefore, in a laser with an etalon, the total

dispersion is determined by the parameter D instead of
total cavity dispersion D in a laser without an etalon. Fig-
ure 3(b) shows the chirp parameter C. The figure shows
that a chirp is added when the pulse duration becomes
minimum. The chirp decreases to zero as the detuning pa-
rameter deviates more from the point where a minimum
pulse duration is obtained.

Figures 4 and 5 shows the dependence of the minimum
pulse duration and the corresponding pulse chirp on the
finesse of the etalon for two different signs of the total
cavity dispersion D. In Fig. 4, the etalon adds a second-
order dispersion with the same sign as the cavity disper-
sion (anomalous dispersion). In this case, the pulse dura-
tion increases as the etalon finesse increases as well as
the pulse chirp. In the results shown in Fig. 5, the total
cavity dispersion is normal and the etalon adds a second-
order dispersion with an opposite sign to the cavity dis-
persion. In this case, when the etalon finesse increases,

(a)

To/r

T
100 500

Finesse

Fig. 4. Dependence of (a) the minimum pulse duration normal-
ized to the Kuizenga—Siegman limit and (b) the chirp parameter
on the etalon finesse calculated using the parameters in Fig. 3
and a normalized detuning, AQ/Q;,=-0.012858.
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Fig. 5. Dependence of (a) the minimum pulse duration normal-
ized to the Kuizenga—Siegman limit and (b) the chirp parameter
on the etalon finesse calculated for a total cavity dispersion D
=-0.13 ps? and a normalized detuning, AQ/Q;,=-0.012858. The
other laser parameters are as used in Fig. 3.

the pulse duration decreases until the pulse duration be-
comes equal to Kuizenga—Siegman limit of 27(=6 ps for
the laser. This limit is reached when the finesse is about
F=1500. At this point, the total cavity dispersion, I:), is
approximately equal to zero. A further increase in the fi-
nesse increases the pulse duration since the total cavity
dispersion begins to increase. Therefore, when the cavity
dispersion, the etalon finesse, and the dispersion of the
material inside the etalon are appropriately chosen, the
insertion of the intracavity etalon will not increase the
minimum pulse duration that can be generated by the la-
ser.

Figure 6 shows dependence of the minimum gain
Re(g,,) that is needed for different laser modes in a
steady-state condition as a function of the detuning pa-
rameter, AQ). The steady-state gain parameter g,, was cal-
culated by solving the equation, obtained from Eq. (21),

MO} (g, K
g,=0+(02m+1)Re — +— +iD-P, .
" 2 \0; O

(28)

Figure 6 shows that the minimum gain is obtained for the
zero-order mode (m=0). The minimum gain is obtained
for the detuning frequency AQ=AQ,;, that gives the
minimum pulse duration. The difference between the
gain of different modes increases as the absolute differ-
ence between the detuning frequencies [AQ—AQ, ., in-
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Fig. 6. (a) Dependence of threshold gain, g,,, for different pulse
modes: m =0 (solid line), 1 (dashed line), 2 (dashed-dotted line), 3
(dotted line). (b) A close-up view near the point where the mini-
mum pulse duration is obtained. The parameters of the laser are
the same as used in Fig. 3.

creases. Therefore, the laser becomes more stable as the
pulse duration increases. In the general case, it is not
straightforward to solve Eq. (28) since the gain g,, ap-
pears on both sides of the equation. However, in a fiber
laser, the constant loss & that does not depend on the
pulse, can be as high as 10 dB [3]. Moreover, the band-
widths of the filter and the amplifier are significantly
broader than the bandwidth of the pulse. Therefore, the
main contribution to the gain is caused by the etalon, rep-
resented by the term P, in Eq. (28) and by the constant
loss 6. Hence, Eq. (28) indicates that the minimum gain
increases as the mode number m increases, due to the
etalon filtering effect. As the mode number increases, the
bandwidth of the generated pulses increases and hence
the loss of the pulses in the laser cavity increases, which
increases the gain. Therefore, the etalon helps to sup-
press higher mode pulses with m = 1. Figure 6 also shows
that the dependence of the gain on the detuning AQ
around the point where the pulse duration is minimal is
approximately linear. This result can be obtained from
Eq. (6), since when the detuning AQ) becomes large, the
parameter 2 and hence the parameter Py become approxi-
mately linear on the detuning difference |[AQ—AQ ;. |.
We note that at the threshold, the parameter A may
have an imaginary part. The imaginary part corresponds
to a small detuning of the laser frequency. The detuning is
equal to dwy=Im(A)/Tg, where Ty is the round-trip dura-
tion. In the example given in Fig. 6, the imaginary part of
A was significantly smaller than the threshold gain,
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Im(A)=4x10"2 and therefore dwy/(27)~1.6 KHz, as-
suming that the cavity length L.=100 m. We also note
that the term Im(A) almost does not affect the parameter
D in Eq. (26) since D=0.13x10"%* 52 while Im(A)/Qﬁ
=0.13x10727 g2,

5. SELECTION OF SUPERMODES
BY THE ETALON

Amplitude noise in actively mode-locked lasers can be
represented in the frequency domain as a simultaneous
lasing of several supermodes [4]. Each supermode con-
sists of a group of coupled cavity modes that are spaced
apart by the modulation frequency. The beating between
several supermodes that simultaneously lase causes am-
plitude noise in the laser pulses and even dropout of
pulses. For the laser to operate stably, only a single su-
permode should lase. In the present section, we will show
that the etalon suppresses undesired supermodes in the
laser as well as locking the central wavelength of the la-
ser pulses. We will also show that the filtering of the int-
racavity etalon can be approximately three times stronger
than the filtering of the same etalon that is connected to
the output of the laser.

In Section 3, we assumed that the frequency offset sw
equals 0. This assumption is only accurate when the laser
generates a single supermode and when the spectrum of
the supermode optimally overlaps the etalon modes and
the gain profile of the amplifier. In this section, we will
not assume that the frequency offset dw is equal to zero.
We will show that the minimum gain that is required for
lasing strongly depends on dw, and therefore, the genera-
tion of several supermodes in the laser will be strongly
suppressed by the etalon.

When the frequency offset dw does not equal zero, the
steady-state fundamental solution (m=0) of the master
equation, given in Eq. (19), can be written as

{ (w+B)? } (T )
a(T,0) =Agexp| - ——7 |exp| —A |. (29)
2 Tr

Substituting Eq. (29) into Eq. (19) and requiring that the
equation is satisfied at each of the powers of the fre-
quency w, we obtain

ow Re(PQ)
TRy, W
sHt=W. (30)
At threshold we obtain
S0 \2HRe(Py) __
g=6-Re| | — | ————-sW|, (31)
hiQy, w

where H=W+Re(P5), while s and W are parameters de-
fined in Eq. (22). Equation (30) determines the pulse du-
ration 27, the chirp C, and the shift of the laser spec-
trum B, as a function of the frequency shift dw.

Figure 7 shows the dependence of the threshold gain g,
on the normalized frequency offset dw/dw, for an etalon
with a finesse of F=200 and for several values of the fre-
quency detuning between the etalon and the laser modes.
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Fig. 7. Dependence of the threshold gain, g, on the frequency
offset dw, normalized to half of the FWHM of the etalon modes,
Sw,, for an etalon with a finesse of F'=200 with a frequency de-
tuning parameter given by h/Q,=2x10"* (dotted curve), 10~*
(dashed-dotted curve), 0.5x10™* (dashed curve), 10~® (solid
curve).

The frequency offset dw was normalized to half of the
FWHM of the etalon mode, dwy, where Swy/Q,=27/F [12].
Figure 8 shows the threshold gain as a function of the
normalized frequency offset Sw for several values of the
etalon finesse F'. The frequency offset dw was normalized
in this figure to half of the FWHM of an etalon mode with
a finesse F=100, dwyg9/Q,=27/100. The frequency detun-
ing parameter was equal to 2/Qy;=0.5X10"%. Since the
pulse with a minimum duration is obtained when A =0,
Eq. (6) indicates that & is approximately equal to the de-
tuning AQ-AQ ;n.

Several conclusions can be deduced from Figs. 7 and 8.
The figures show that the etalon causes a dependence of
the threshold gain on the frequency offset dw. Since each
supermode has its own frequency offset, the etalon helps
to suppress supermode competition. As the threshold gain
for a supermode increases, it becomes more difficult for
the supermode to lase. Therefore, when the dependence of
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Fig. 8. Dependence of the threshold gain, gy, on the normalized
frequency offset dw/ dwqgg, where Swyg is half of the FWHM of an
etalon with a finesse F'=100. The values of the etalon finesse are
F=100 (solid curve), 200 (dashed curve), 400 (dashed-dotted
curve). The detuning parameter is given by 4/;;=0.5x 1074,
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the threshold gain on the frequency offset dw is stronger,
the supermode with the lowest gain becomes more stable
while the other supermodes are suppressed. Figures 7
and 8 show that the suppression of all but one supermode
becomes stronger as the absolute value of the detuning
parameter |h| decreases. Therefore, the maximum sup-
pression of the unwanted supermodes is obtained at A
=0, where a pulse with a minimum duration is generated.
Unwanted supermodes are more strongly suppressed as
the etalon finesse increases, for a fixed detuning param-
eter AQ). However, Fig. 4 shows that the minimum pulse
duration also increases as the etalon finesse increases.
Therefore, the best combination of strong suppression of
all but one supermode with a short pulse duration is ob-
tained for a moderate finesse of the order of several hun-
dreds.

Suppression of unwanted supermodes is obtained even
when their frequency offset dw is significantly smaller
than the FWHM of the etalon modes. Therefore, the eta-
lon filtering is significantly stronger than the filtering
from the same etalon connected to the output of the laser.
This result is obtained since a pulse that propagates in
the cavity passes through the etalon on each round trip,
and therefore, the effect of the etalon accumulates. For
example, when 2 =0 the filtering of etalon at a frequency
offset Sw=dw, is approximately three times stronger than
the filtering of the same etalon connected to the output of
the laser. The strong dependence of the threshold laser
gain on the frequency detuning éw also indicates that the
etalon helps to lock the central wavelength of the laser to
the etalon modes since it promotes the generation of a
specific supermode. The supermode that will lase will
have the minimum frequency detuning |Sw|.

Figure 9 shows the dependence of the carrier frequency
offset B on the frequency detuning Sw. The carrier fre-
quency offset B minimizes the cavity loss due to the fre-
quency detuning dw. The carrier frequency offset linearly
increases as a function of the frequency detuning dw, as
shown in Eq. (30). The carrier frequency offset also de-
pends on the parameter 2. When the parameter £ is equal

Oow/0@ :

Fig. 9. Dependence of the central frequency offset Re(B), nor-
malized to the modulation frequency (), as a function of the fre-
quency offset dw, normalized to half of the FWHM of an etalon
mode with a finesse F=200, for A/Qy;=2x10"* (solid line) 10
(dashed line), 5x 1075 (dashed—dotted line), and 107> (dashed—
double-dotted line).
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to zero, the etalon does not filter the laser pulses since
Re(P,)=0, and hence, B=0. When the parameter & does
not equal to zero the bandwidth and the central frequency
of the effective filter created by the etalon depends on the
parameter A and the frequency detuning dw. When the
parameter A increases (h>0), both the bandwidth and
the frequency offset of the effective etalon filter decrease.
Therefore, the maximum frequency offset is obtained
when h/Qy~17.5x1075.

6. CONCLUSION

We have theoretically analyzed an actively mode-locked
fiber laser with an intracavity etalon by solving the mas-
ter equation for the laser for the case when nonlinearity
can be neglected. We have taken into account the linear
dispersion of the material inside the etalon, and we have
shown that this dispersion can lead to an increase of the
pulse duration by a factor of ~10. The large increase in
the pulse duration may be avoided by adding a small fre-
quency detuning between the repetition rate of the laser
pulses and the free spectral range of the etalon. The first-
and second-order dispersion of the material inside the
etalon, as well as the etalon finesse, should be taken into
account when calculating the cavity dispersion.

The etalon helps to suppress a simultaneous lasing in
several supermodes as well to suppress lasing in higher-
order pulse modes of the master equation. The etalon also
helps lock the central wavelength of the laser to the eta-
lon comb. Therefore, the use of an intracavity etalon
eliminates the need to control the laser cavity as required
when the laser is locked to an external etalon [9]. The fil-
tering effect of the etalon can be three times stronger
than the effect of the same etalon connected to the output
of the laser. By appropriately choosing the cavity disper-
sion, the etalon finesse, and the dispersion of the material
inside the etalon, the minimum pulse duration can be
equal to the Kuizenga—Siegman limit of a laser without
dispersion. While our work was motivated by the experi-
mental work reported in Refs. [4-7], a detailed compari-
son of our theory with these experiments was not possible
because the cavity dispersion was not exactly reported.
We cannot emphasize too strongly that our work shows
the importance of both the cavity and the etalon disper-
sion in determining the pulse duration and hence the im-
portance of carefully determining and optimizing their
values in experimental studies.

Nonlinearity in the laser cavity was neglected in this
paper. We are currently developing a comprehensive nu-
merical model that will take into account nonlinearity in
a laser with an intracavity etalon. Since the intensity in-
side the etalon is high, it is expected that the etalon will
play a significant role in the laser operation. Preliminary
results indicate that a small detuning between the etalon
and the cavity modes may cause a time shift of the pulses
and sometimes even instability in the laser operation.
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