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Abstract—The authors have derived a receiver model that pro-
vides an explicit relationship between the () factor and the optical
signal-to-noise ratio (OSNR) in optical fiber communication sys-
tems for arbitrary pulse shapes, realistic receiver filters, and ar-
bitrarily polarized noise. It is shown how the system performance
depends on both the degree of polarization of the noise and the
angle between the Stokes’ vectors of the signal and the noise. The
results demonstrate that the relationship between the OSNR and
the @ factor is not unique when the noise is partially polarized.
This paper defines the enhancement factor and three other param-
eters that explicitly quantify the relative performance of different
modulation formats in a receiver. The theoretical and experimental
results show that the performance of the return-to-zero format is
less sensitive to variations in the receiver characteristics than is the
performance of the nonreturn-to-zero format. Finally, a validation
of the formula is presented for computing the @) factor from the
OSNR and the Stokes vectors of the signal and the noise by com-
parison with both experiments and Monte Carlo simulations.

Index Terms—Bit-error rate (BER), modulation format, optical
communications, optical signal-to-noise ratio (OSNR), polariza-
tion, polarization-sensitive devices, Q factor.

1. INTRODUCTION

FUNDAMENTAL problem in the design of optical fiber

transmission systems is to achieve a desired bit-error rate
(BER), with a given outage probability, after the signal is trans-
mitted through a system. Another widely used performance
measure is the (Q factor [1], which is a function of the means
and the standard deviations of the received electric currents in
the marks and in the spaces [1]-[3]. Therefore, the @ factor can
be obtained experimentally in the time domain using an oscil-
loscope. The (@ factor can be used to give an approximate value
for the BER under the assumption that the electric currents in
the marks and in the spaces at the receiver are both Gaussian
distributed. Even though the actual distributions of the marks
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and of the spaces are not Gaussian, this approach can provide
a good estimate of the BER in some cases [4], [5]. When the
BER can be directly measured in the receiver BER> 1013,
the @) factor can be estimated from the BER [3]. Otherwise,
in experiments, the () factor is usually estimated using the
decision-circuit method that was introduced by Bergano et al.,
[5]. In both these cases, the reported () factor is really just a re-
statement of the BER, rather than an independent performance
measure. The optical signal-to-noise ratio (OSNR) is another
commonly used performance indicator that is even easier to
measure than the @ factor [4], [6]. However, the relationship
between the OSNR and the () factor is not straightforward,
since the ) factor also depends on the shapes of the optical
pulses after transmission, the polarization state of the noise,
and on the characteristics of the receiver.

The design and performance evaluation of optical fiber com-
munication systems relies just as much on the accuracy and ef-
ficiency of receiver models as it does on accurate and efficient
modeling of the transmission line [7]. Accurate receiver mod-
eling is especially important when comparing modulation for-
mats [7], [8]. Marcuse [ 1] and Humblet and Azizoglu [4] derived
widely used approximate expressions for the () factor as a func-
tion of the signal-to-noise ratio (SNR) of the electric current and
as a function of the OSNR, respectively. In both [1] and [4], the
authors assume that the receiver consists of a rectangular optical
filter, a square-law photodetector, and an integrate-and-dump
electrical filter. They also assume that the optical signals have
a perfect extinction ratio and that the optical noise is Gaussian
and white prior to the optical filter. Finally, they assume that the
signal is polarized and that the optical noise is either unpolarized
or is completely polarized and is co-polarized with the signal.

In this paper, Marcuse’s and Humblet and Azizoglu’s results
are generalized by deriving a formula for the () factor in terms
of the OSNR for an optical signal in a single polarization state
with an arbitrary pulse shape immediately prior to the receiver,
with an arbitrary optical extinction ratio in the spaces, for ar-
bitrary optical and electrical filters in the receiver and for ar-
bitrarily polarized noise. To do so, the moments of the electric
current in the receiver are calculated using an approach that was
introduced earlier by Winzer et al. [7] to calculate the BER.

For systems without polarization effects, the optical noise en-
tering the receiver is unpolarized. This case has been extensively
treated in the literature [1], [4], [7], [9], [10]. However, the po-
larization state of the noise can be significantly affected by the
presence of polarization-dependent components, such as com-
ponents with polarization-dependent loss (PDL) and polariza-
tion-dependent gain (PDG) [11]. Recently, there has been a sub-
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stantial amount of work that indicates the importance of these
effects [12], [13], and the work reported in this paper was moti-
vated by the experimental work reported in [14].

In this paper, the method in [7] is extended to account for
arbitrarily polarized noise. Here, it is demonstrated that, for a
fixed OSNR, the @) factor can vary widely depending both on
the degree of polarization (DOP) of the noise and on the angle
between the Stokes’ vectors of the signal and the noise. In this
paper, it is assumed that the signal is polarized across the band-
width of the optical filter. Consequently, the proposed formula
for the @ factor is valid only for systems in which the polariza-
tion-mode dispersion (PMD) is small enough so that PMD-in-
duced pulse spreading and depolarization of the signal does not
have a significant impact on the performance of the system. In
such systems, it is still possible for the noise within the band-
width of the optical filter to become partially polarized due to
PDL in the amplifiers. An example of such a system is the pro-
totypical transoceanic undersea system studied in [15], which
has low-PMD fiber and a large number of amplifiers, each with
a small amount of PDL. In this system, the probability that the
degree of polarization of the noise at the receiver exceeds 0.3
is larger than 10~3. For such a system, a receiver that accounts
for partially polarized noise is necessary to accurately calculate
the low probability tails of the distribution of the () factor [16].
A closely related example is the long-haul dispersion-managed
soliton system studied in [17] in which the signal remains highly
polarized over long distances, since any PMD-induced pulse
spreading and depolarization of the signal is counteracted by the
strong nonlinearity. Indeed, in [17], our receiver model was used
to obtain excellent agreement between simulations and experi-
ments over 18 000 km. Such good agreement would not have
been possible without a receiver model that accounted for par-
tially polarized noise. Therefore, although there are important
situations in which both the signal and the noise may become
depolarized, the assumption used in this paper that the signal is
polarized is reasonable, since it holds for an important class of
experimental systems. The formula for the () factor presented
here can be used in combination with reduced models of the
transmission line to quantify how the performance of a system
depends on the combined effects of PMD, PDL, PDG and the
gain saturation of optical amplifiers [15], [18]. In particular, in
[17], the expression for the () factor that was derived in this
paper was used, together with the reduced Stokes’ model of the
polarization effects [15], to model the performance of a disper-
sion-managed soliton optical fiber recirculating loop. Excellent
agreement was obtained between simulations and experiments
at a transmission distance of 18 000 km.

In order to correctly account for the pulse shape in the for-
mula for the @ factor, an enhancement factor was defined that
explicitly quantifies how efficiently the combination of a pulse
shape and a receiver translates the OSNR into the SNR of the
electric current in the receiver.

For the results presented in this paper, any intersymbol inter-
ference (ISI) in the receiver was accounted for by computing
the ) factor using the mark with the smallest voltage and the
space with the largest voltage in the noise-free electrically
filtered signal [9], [10]. However, in the presence of trans-
mission-induced bit-pattern dependences, one must use the
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formulas for the mean and the variance of the electric current
derived to compute the ) factor more accurately using the
procedure introduced in [19]. In other words, using the formula
in this paper, one can incorporate partially polarized noise into
receiver models that correctly treat bit-pattern dependences
in the noise-free signal. Thus, the results presented here are
complementary to those of other authors.

The formula for the ) factor is validated by comparison with
several experiments and Monte Carlo simulations. Using the au-
thors’ own theory and back-to-back experiments, it is shown
that the return-to-zero (RZ) format is less sensitive to variations
in the receiver characteristics than the nonreturn-to-zero (NRZ)
format. In [8], a simplified version of this formula was used
to explicitly quantify the advantage in the receiver of using a
chirped return-to-zero (CRZ) modulation format rather than an
RZ or an NRZ format with the same mean optical power and re-
ceiver characteristics. Just as in [1]-[4], the computational cost
of computing the @ factor using this formula is orders of mag-
nitude less than the cost of accurately computing the () factor in
the time domain using Monte Carlo simulations. However, this
model does not take into account nonlinear signal-noise inter-
actions during transmission that can both amplify and color the
noise prior to the receiver in long-haul fiber transmission sys-
tems [20], [21].

In Section II, the formula for the () factor is derived. In that
formula, the ) factor is expressed in terms of the SNR of the
electric current, and it is extended to express the ) factor in
terms of the OSNR and the polarization state of the noise rel-
ative to that of the signal. In Sections III and IV, the receiver
model discussed in Section II is validated by comparison to
Monte Carlo simulations of the receiver and back-to-back ex-
periments, respectively. In both sections, the validation is per-
formed with unpolarized optical noise and with partially polar-
ized noise prior to the receiver. The formula for the () factor
includes parameters, such as the enhancement factor, that only
depend on the shape of the noise-free signal and the receiver fil-
ters. In the Appendix, tables are provided for these parameters
that allow one to easily calculate the @) factor for such systems
without having to compute the multiple integrals described in
Section II, which are required for the computation of these pa-
rameters.

II. RECEIVER MODEL
A. Introduction

In this section, we derive an expression that relates the )
factor to the OSNR, and we introduce the enhancement factor.
The enhancement factor quantifies the relative performance of
different modulation formats and receivers [15]. We begin by
recalling the expressions for the mean and variance of the elec-
trically filtered current in the receiver as in [7], which we gener-
alize to account for arbitrarily polarized optical noise. We em-
phasize that one cannot simply compute the variance of the elec-
tric current due to the beating of the noise with itself by sum-
ming the variance of the current that is produced by the noise
component that is co-polarized with the signal with the variance
of the current produced by the noise component that is orthog-
onal to the polarization state of the signal. This approach is not
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correct in general, since these two orthogonal components of the
noise may be correlated in systems with PDL. Instead, one must
decompose the noise into two uncorrelated orthogonal compo-
nents, neither of which can be assumed to be co-polarized with
the signal. However, in Section II-B, we show that this approach
can only produce accurate results when the PMD-induced depo-
larization of the noise within the bandwidth of the optical filter
is negligible.

At the receiver, we assume that noise from optical ampli-
fiers is the dominant source of noise, as is the case in an optical
communications system with an optically preamplified receiver
[22]. Prior to the optical filter in the receiver, we assume that
the signal is polarized and that the noise is a Gaussian white
noise process that has been generated by optical amplifiers. We
let e5(t) and e, (t) denote the Jones vectors of the electric-field
envelopes of the signal and noise, respectively, prior to the re-
ceiver, where ¢ is time. Since most optical transmission systems
have polarization-dependent components that can affect the po-
larization state of the noise, we assume that the optical noise
entering the receiver has an arbitrary polarization state.

Our receiver model consists of an optical filter with a com-
plex equivalent baseband transfer function H,(w) and corre-
sponding impulse response h, (%), a square-law photodetector,
and an electrical filter with a transfer function H,(w) and cor-
responding impulse response h.(t). In our derivation, we have
neglected the gain and attenuation in the optical filter and in
the electrical circuit of the receiver at the central frequency of
the channel, since they do not affect the SNR. Therefore, the
absolute value of the transfer functions of the optical and the
electrical filters have the value 1 at the central frequency of the
channel |H,(0)| = |H.(0)| = 1. The transfer function H,(w)
can account for the linear effects in other electrical components
of the receiver, including the photodetector. Then, the electric
current at the receiver is given by

i(t) = Rl[es(t) + en(t)] * ho(t)|* * he(t) (D)

where R is the responsivity of the photodetector, and the con-
volution of two arbitrary functions g(t) and h(¢) is defined by
g(t) * h(t) = [77 g(r)h(t — 7)dr.

oo

B. Noise Correlation

We assume that the optical noise prior to the optical filter
at the receiver is a Gaussian white noise process that has been
generated by optical amplifiers. Therefore, the optical noise is
delta-correlated with independent and identically distributed
real and imaginary Gaussian probability density functions with
zero mean [23]. Hence, the autocorrelation function of the
optical noise is given by

(en(t) - e} (t')) = Nasgd(t —t') @)

where v - w* = vyw] + vowj is the standard Hermitian inner
product of two Jones vectors v = [vy, v5]" and w = [wy, ws]",
which is independent of the choice of the orthonormal basis of
Jones space. The bracket ( - ) indicates an average over all noise
realizations, and N gg is the total power spectral density of the
noise prior to the receiver. The effect of the optical filter on the
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input light is given by the convolution of the impulse response
of the optical filter h,(t) with the Jones vector of the input light.
Therefore, the optically filtered noise e, (¢) can be defined as
e, (t) = e,(t) * ho(t). Using (2), the autocorrelation function
of the optically filtered noise is given by

(en,(t)-eh (1)) = Naspro(t' —t) 3)

where
+oo
To(T) = / ho(TRE(T + 7")dr’ 4)
is the autocorrelation function of the optical filter. The quantity

+oo
ro(0) = / o ()2 d” ®)

is the noise equivalent bandwidth of the optical filter [24], which
we also denote by B,,.

To account for the effect of polarization-dependent compo-
nents in the transmission line, we must first derive expressions
for the autocorrelation function of the noise in the two orthog-
onal polarization state components in which the noise is uncor-
related. To do so, we compute the temporal coherency matrix
[24], which is a 2 X 2 complex Hermitian matrix that describes
both the time correlation and the polarization state of light. As-
suming that the optical noise entering the receiver has an arbi-
trary polarization state, the temporal coherency matrix J,,(7) of
the optically filtered noise is defined by

(enoen, (t+1)) (en..(Deh, (L+1))

In(m) = <enoyy(t)ezo’z(t+7)> <eno.y(t)€no,y

*
—~
~
+
3
~
~——

(6)

where e, (t) and ey,  (t) are the components of the Jones
vector of the optically filtered electric field of the noise e, (t)
in an orthonormal basis {a,, &, } of Jones space, and 7 is a time
delay between the field components. We assume that the noise
process is wide-sense stationary. Therefore, J,,(7) does not de-
pend on the time ¢. Assuming that the differential-group delay
between two orthogonal components of the complex envelope
of the noise field due to PMD in the transmission line is small
compared with the width of the impulse response of the optical
filter h,(t), the PMD will not cause a significant depolariza-
tion of the polarized component of the noise in the bandwidth
of the optical filter. As a consequence, all the elements of the
temporal coherency matrix J,,(7) have approximately the same
time-delay dependence 7,(7) given by (3). In this case, the state
of polarization of the filtered noise can be represented by the
coherency matrix J,, = J,,(0) of the optically filtered noise de-
fined as [25]
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and the temporal coherency matrix becomes

_ TO(T)
Jdn(7) = TO(O)J"' ®
The elements J,,, = (en,, (t)e; () and J, =

(en,,(t)en, () in (7) are the intensity of the filtered
noise in the a, and a, polarizations, respectively, while
Jney = (en,.(t)ey, (t)) is a measure of the correlation
between the components of the electric field in the &, and a,
polarizations [25]. The optical intensity of the filtered noise

Lo 18 equal to the trace of the matrix J,,

Itot = TrJn = JnII + Jnyy

= (en,. (Dei, . (O) + (en,, (B, , (1) = NaseBo
©)

and the degree of polarization of the filtered noise is given by

I,
poP,, = 22 — (1 (10)

_ 4Detd,, ) 1/2
Itot B

(Trd,,)?

where I,,o1 is the optical intensity of the polarized part of the
filtered noise [25]. Note that the quantities I,o1, Jtot, and DOP,,
do not depend on the choice of orthonormal basis of Jones space.

The polarization state of the optically filtered noise
can also be characterized by the Stokes’ parameters
S, = [SngsSnysSnys Sny]t of the noise, where S,,, is the
average power of the noise after it is filtered by an optical
filter in the receiver. The filtered noise can be decomposed
as the sum of a polarized part with Stokes’ parameters
[1Suls Sny» Snyy Sns]t and an unpolarized part with Stokes’
parameters [S,,, — [S,.[,0,0,0]*, where S,, =[Sy, Snys Sns
is the Stokes’ vector of the filtered noise. The DOP of the noise
given by (10) is the power ratio of the polarized part of the
noise to the total noise, i.e., DOP,, = |S,|/Sn,. The Stokes’
parameters of the optically filtered noise can be expressed in
terms of the noise coherency matrix by the formula

(11)

Since the coherency matrix J,, is Hermitian, there is an or-
thonormal basis {a;,a2} of Jones space in which J,, is di-
agonal with J,,, > J,,, [25]. This basis simply consists of
the unit length eigenvectors of J,,. In the corresponding frame
for Stokes’ space, the Stokes’ vector of the filtered noise is
S.. = [S.,DOP,,, 0, 0]*. Consequently, in Jones space, the unit
vectors a; and & are, respectively, parallel and perpendicular
to the polarized part of the filtered noise. In the basis {a;, a5},
the electric field of the filtered noise is given by

en,(t) = €n, 1 (t)ay + €n, o (t)az (12)
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where the components e,,, , () and e, , (t) of the filtered noise
are uncorrelated, since J,, is diagonal. Moreover, in this basis,
(10) simplifies to

DOP,, = (Jnll_JnZZ)/(Jnll+Jn22)' (13)
Using (6)—(10) and (13), we find that
1
Jnl L (T) = 5(1 + DOPn)NASET’O(T)
1
anz(T) = (]. — DOPn) NASETG(T) (14)

2
and J,,,(7) = 0. Therefore, the autocorrelation functions of
the components of the optically filtered noise are

(ene (105, (1)) = (14 DOP) Nasprolt' 1) (15)
and
1
<em (t)er, (t’)> = (1= DOP,)Nasers(t' =) (16)

while the cross correlation is
(enna(B)es, L (£)) =0

where Nasg is the total power spectral density of the noise prior
to the receiver that was introduced in (2).

7)

C. Moments of the Electric Current

Since we are assuming that the signal is polarized, we can
express the Jones vector of the optically filtered signal e, (¢) =
es(t) * ho(t) as es, (t) = es,(t)és,, where e, (t) is a scalar
field and &, is a unit Jones vector. The expression for e;_(t) in
the basis {a1,as} is

e, (t) =es,(t) (€5, -a]) a1 + e, (1) (&5, - 83) A2.  (18)
The term e, (t)(€s, -aT)a; is the component of the Jones vector
of the filtered signal that is in the same polarization state as the
polarized part of the noise, while e;_(t)(€;, - a})as is the com-
ponent of the Jones vector of filtered signal that is orthogonal to
the polarized part of the noise.

We now substitute the the expressions for e, (¢) and e;, (t)
in (12) and (18) into (1) to obtain

i(t):R{

2

(€s, - a7) es, (1) + en,, ()]

+](6s, - 83) €6, (1) + e, o (O]} £ he(d). (19)

In order to compute the mean (i, )(t) and the variance o?(t) of

the current at any time ¢, we use the statistical properties of the

optically filtered noise that we described earlier in this section.
Combining (15)—(17) with (19), we find that

(0)(t) = is(t) + (in)(?)

where (-)(t) is the average over the statistical realizations of
the noise at time ¢, and

(20)

is(t) = Rles, ()| * he(t) (21)
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is the electric current due to the signal. Furthermore,

(in)(t) = (in) = RNaseB, (22)
is the mean current due to noise, which is time independent,
since the optical noise is a wide-sense stationary random
process. The parameter B, = 7,(0) = jjoO: |ho(T)|? dT is
the noise-equivalent bandwidth [24] of the optical filter. If, for
example, the noise has a power spectral density of 1 W/Hz, then
after passing an optical filter with noise-equivalent bandwidth
B, (in hertz) the optical power is exactly equal to B, (in watts),
regardless of the shape of the optical filter. As a consequence,
the noise-equivalent bandwidth is a measure of the optical
bandwidth that is more useful for the study of optical noise
statistics in this context than other more traditional bandwidth
measures, such as the full-width at half-maximum (FWHM)
and the root-mean-square width.

Following a similar procedure used in the derivation of (22),
we find that the variance of the current at any time ¢ has the form

op(t) = (*)(t) = (i)*(t) = oAse_asE + 95_ase(t). (23)
The first term on the right side of (23) is the variance of the
current due to the noise beating with itself in the receiver—the
noise—noise beating. The variance of the current due to the
noise—noise beating is given by

1 IAsE—AsE
OASE_ASE = ERZNKSE—FASE—ASE (24)
where
1
TAsE— = 25
ASE-ASE = 7T op? (25)
and
+oo
IASE—ASE = / |’I”O(T)|2TE(T) dT. (26)
Here, the expression
+o0
re(T) = / he(T)he(T + 7') d7’ 27)

is the autocorrelation function of the electrical filter. The
noise—noise beating factor ['agg— ask is the ratio between the
variance of the current due to noise—noise beating in the case
that the noise is unpolarized to the actual variance of the current
due to noise—noise beating. The second term on the right-hand
side of (23) is the variance of the current due to the beating be-
tween the signal and the noise in the receiver—the signal-noise
beating. The variance of the current due to the signal-noise
beating is given by

1 A A
03_asp(t)= §R2NASE|:(1 +DOP,,) |é,, -at|?

+ (1 - DOP,) |é,, - a3 2} Is—asE(t)
(23)
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where

+oco

IS—ASE(t) =2 / GSO(T)hE(t — T)

— 00

+oo
X / es, (The(t — T')ro(T — 7')dr’ dT.

— 00

(29)

The integral expressions in (26) and (29) may be derived fol-
lowing a procedure similar to the one in [7]. The terms |é,, -a% |2
and |é,, - 43| are the relative intensities of the components of
the field e, (¢)é;, that are, respectively, parallel and perpendic-
ular in Jones space to the polarized part of the optically filtered
noise. These terms can be represented in Stokes’ space as

& 4% — 1 (p)

6., a1 = 5 (145, -5) (30)
and

& 4% — 1 _ (p)

les, -a5]" = 2 (1 Ss =Sy ) 31

where s, and s = S,, /|Sn| are the unit Stokes” vectors of the

signal and the polarized part of the filtered noise, respectively.
The dot products on the right-hand sides of (30) and (31) are
the standard dot product between two real valued vectors with
three dimensions, which can also be mathematically represented
by the definition given after (2). Substituting (30) and (31) into
(28), we find that

03_asp(t) = R*Naspl's_asepls_ase(t) (32)
where
1 (»)
Ts-ase = 5 [1+DOP, (s, -0 )] (33)

is the signal-noise beating factor, which is the fraction of the
noise that beats with the signal.

In the case with the signal, (22), (24), and (32) agree with the
corresponding expressions in [7].

D. The Q Factor and the Enhancement Factor

We now use the expressions for the mean and the variance
of the current that we derived in Section II-C to derive a gen-
eral expression for the () factor as a function of the OSNR. We
follow a procedure that is similar to the one described in [1], but
we use the exact mean and the exact variance of the electric cur-
rent. We start with the standard time-domain definition of the )
factor, as follows:

o - i) = o) )

01+ 0o

as in [1], which is related to the BER by BER =~
erfc(Q/v2)/2 ~ exp(—Q?/2)/(vV/27Q), provided that the

electric currents in the marks and in the spaces are Gaussian
distributed.
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For the results presented in this paper, we compute the @
factor using the smallest mark and largest space in the noise-free
signal, since these two bits are the main sources of errors in the
receiver [9], [10]. Rebola and Cartaxo showed that this proce-
dure produces accurate (Q-factor estimates in systems that do not
have significant ISI [10]. Substituting (20) and (23) into (34), we
now obtain (35), shown at the bottom of the page, where ¢; and
to are the sampling times of the lowest mark and the highest
space, respectively. To define the sampling time for marks and
spaces, we recover the clock using algorithms based on those de-
scribed by Trischitta and Varma [26]. In the presence of pattern
dependences and ISI, one can use the expressions for the mo-
ments of the electric current in (22), (24), and (32) to compute a
more accurate expression for the () factor using a procedure that
was introduced by Anderson and Lyle [19], which corresponds
to the true @ factor in [27].

By rearranging (35), the () factor can be expressed in terms
of the SNR of the electric current of a mark

is(tl)

SNR; = (i)

(36)

and the extinction ratio of the electric current in the receiver

IO 37)
ls(tl)
as
1 — a.)SNRy M'/?
Q= SR (38)
(KlsNRl + 1)1/2 + (KOQESNRl + 1)1/2
where
Vo2 ¢
Ky = Q)C@;ﬂ (39)
is(t0)0xsE_AsE
and
K, = M (40)

is(t1)03sp_AsE

We use the definition of the electrical SNR given in (36) since,
as we will see in (49) hereafter, it is closely related to the OSNR.
We call K and K; the signal-noise beating parameters for the
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spaces and marks, respectively, because they are directly pro-
portional to the ratio between the variance of the current due to
the signal-noise beating and the variance of the current due to
the noise—noise beating. The parameter

(in)?

M 2
g
ASE—ASE

(41)

is the effective number of noise modes. We use this terminology
because M is a generalization of the parameter indicating the
number of noise modes that was introduced by Marcuse [1].
In that work, Marcuse found that only a finite number of noise
Fourier components—noise modes—contribute to the electric
current due to noise in a receiver with a rectangular optical filter
and an integrate-and-dump electrical filter.

The parameters K, K1, and M are dimensionless and do not
depend on the average power of the signal or on the average
power of the noise. To separate out the dependence of these three
parameters on the polarization state of the noise, we use (24) and
(32) to express Ky and K7 as

Ky = 2's_asel'ase—asEkro (42)
and
K1 = 2I's_asel'ase—asEr1 (43)
where
RB,Is_ asg(to)
Ko = — o STASELO) 44)
0 is(to)IasE—ASE (
and
RB,Is_ t
oy = s—asge(t1) (45)

is(t1)Iasp—AsE

If the noise is either unpolarized or completely co-polarized
with the signal, then Ky and K; are equal to ¢ and k1, re-
spectively, since then 2I's_aspl'asg—asg = 1. Similarly, we
obtain M = I'asg_asgp, Where

2B?

=% (46)
IxsE—asE

is equal to M in the case where the noise is unpolarized. Then,
the @ factor can be expressed as (47), shown at the bottom of the

[1s(t1) + (in)] = [is(f0) + (in)]

(03_ase(t1) + 03sp_asE

)1/2

(35)
172
+ (03_asu(to) + 03sp_ask)

Q_

(1 — ae)SNRy (Pase-asen)"/?

(2I's_asel'ase—asexk1SNR; + 1)1/2 + (2I's—asel'AsE—asekoaeSNR; + 1)

5 A7)
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page. In this formula, the dependence on the polarization state
of the noise is accounted for by the noise—noise beating factor
T'asg—asg defined in (25) and the signal-noise beating factor
I's_ask given in (33). These factors have values in the range
1/2 < Tasg_asg < land 0 < I's_asg < L. If the noise is
unpolarized, T'asg—asg = 1 and I's_ssg = 1/2. If the noise
is completely co-polarized with the signal, I'ssg—asg = 1/2
and PS—ASE =1.

The expression for the () factor in (47) separates the effects of
the polarization state of the noise and of the signal from the pulse
shape and the receiver characteristics. However, the @ factor is
given as a function of the SNR of the marks SNR; in the re-
ceiver, which also depends on the pulse shape and on the char-
acteristics of the receiver. Thus, it is appropriate to express the
@ factor in terms of a quantity that does not depend on the pulse
shape or on the receiver, such as the OSNR. We define the OSNR
by

(les(t) )

OSNR =
NaseBosa

(48)

where (Jes(t)|?)s is the time-averaged noiseless optical power
per channel prior to the optical filter, and Bpga is the noise
equivalent bandwidth of an optical spectrum analyzer (OSA)
that is used to measure the optical power of the noise. This defi-
nition of OSNR is consistent with the definition in [6], [28] and
agrees with the OSNR value that can be obtained directly from
an OSA whose resolution bandwidth is large compared with the
bandwidth of the signal.

In order to express the () factor as a function of the OSNR, we
define the enhancement factor £ as the ratio between the SNR
of the electric current of the marks SNR; and the OSNR at the
receiver. The enhancement factor can be expressed as

_ SNR; _ is(t1) NaseBosa _ ¢ Bosa

$=Z0SNR = (i) {lea®P) ~° B,

(49)

where ¢ = i.(t1)/[R{|ein(t)|?)s] is the normalized enhance-
ment factor, which is equal to ¢ when Bosa = B,. The en-
hancement factor quantifies how efficiently the combination of
the pulse shape and receiver translates the OSNR into the SNR
of the electric current of the marks in the receiver.

Substituting (49) into (47), we finally obtain an exact expres-
sion that relates the () factor directly to the OSNR and to the po-
larization states of the optical noise and of the signal prior to the
receiver, as shown in (50) at the bottom of the page. The optical
pulse shape prior to the receiver and the shapes and bandwidths
of the optical and electrical filters in the receiver are taken into
account in the determination of the values for k¢, k1 and pu, as
given in (44)—(46).
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E. Comparison With Previous Formulas for the Q Factor

In an optical fiber system with the NRZ modulation format
that consists of perfectly rectangular pulses with perfect optical
extinction ratio («, = 0), unpolarized optical noise, and a re-
ceiver that consists of a rectangular optical filter and an inte-
grate-and-dump electrical filter, the formula (47) for ) becomes

SNR;
~ (K1SNRy + 1)1/2 4 1‘/’7

(51

where k1 = 2, which is the same as the formula for @ in [1].
Using (50) and (51), we can express the () factor in terms of the
OSNR as

_ £OSNR

~ (k1€OSNR + 1)1/2 + G

(52)

where k1 = 2 and £ = 2, which is the same as the formula for
Q in [6] for the same system that we considered in (51). In (52),
& = 2 because the average optical power in this system is equal
to half of the average optical power in the marks.

F. Numerical Efficiency

To efficiently compute the parameters kg, k1, and p, we can
use Fourier transforms to numerically compute the multiple in-
tegrals in (26) and (29). From the convolution theorem, we ob-
tain

+oo
. 2
Iseoase = [ [F P 7 IR e (59

where H,(w) = H,(—w), and F,[-] and F;*{ -} denote the
forward and inverse Fourier transform with respect to 7, while

IS—ASE(t):Z}—t_l {Hej:ﬂ' [eso (1)
< {2 F (e, (b (=] }] }
(54)

where h,(t) = F;7H{H.}.
To correctly interpret (54), we first observe that the convolu-
tion operation with respect to 7

+o0

/ g(T, t)h(t — 7)dr (55)

— 00

[g(7,8) %+ h(T)](t) =

where we regard ¢ as a parameter in the function g(7,¢), can be
expressed as

[9(7,1) %+ h(T)](t) = FH (Frg)(w, t)(Frh)(w)].  (56)

(1 — e )€OSNR(T" asp—askp) /2

Q=

(2Ts_asel asE—aser1EOSNR + 1)1/2 + (2T's_ssglasp—aseroeEOSNR + 1)1/2°

(50)
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Q-factor

OSNR

Fig. 1. Comparison of the formula (50) for the () factor as a function of the
OSNR with the time-domain Monte Carlo method of computing the ¢ factor for
the RZ raised-cosine format. The noise-equivalent bandwidth of the OSA was
25 GHz. For the Monte Carlo simulations, the statistics of the ¢ factor were
obtained using 100 () samples each with 128 b. The solid line shows the result
using (50). The dashed line and the two dotted lines show the mean () factor for
all 100 ) samples and the confidence interval for a single ¢ sample, defined by
the mean ) factor plus and minus one standard deviation computed using the
time-domain Monte Carlo method. The error bars show the confidence interval
for the mean () factor for all 100 ¢} samples.

Therefore, for each fixed value of ¢, a discrete approximation to
(55) is given by the inverse discrete Fourier transform (DFT) of
the product of the DFTs of the vectors g(7;,t) and h(7;). Then,
to interpret (54), we observe that

Is ase(t) = 2 {he(7) *; [es, (1) ({€X. (")
Xhe(t—7")} *,,-/7‘0(7'/)) ('r)] } (t).
(57)

III. RECEIVER MODEL VALIDATION WITH
MONTE CARLO SIMULATIONS

We now present a validation of (50) for computing the @
factor from the OSNR with a known pulse shape at the receiver
by comparison with two sets of Monte Carlo simulations in
which the @ factor is computed using the standard time-domain
formula Q = ((i1) — (i0))/(01 + 00). For the first set of sim-
ulations, we used a back-to-back 10-Gb/s optical system with
unpolarized optical noise that was added prior to the receiver
using a Gaussian noise source that has a constant spectral den-
sity within the spectrum of the optical filter. For the second set
of simulations, we used another back-to-back 10-Gb/s system
with partially polarized optical noise, which was obtained by
transmitting unpolarized noise through a PDL element. Since
our study is focused on the combined effect that the pulse shape
and the receiver have on the system performance, we did not
include transmission effects here, such as those due to nonlin-
earity and dispersion.

In Fig. 1, we show the @ factor versus the OSNR for an RZ
raised-cosine format with a 50% duty cycle and an optical ex-
tinction ratio of 18 dB. The electric field of an RZ raised-co-
sine pulse is given by e, (t) = [Py cos?(wt/T)]'/2, where Py is
the peak power and 7T is the bit period. The receiver consisted
of a Gaussian-shaped optical filter with a FWHM of 124 GHz
and a fifth-order, low-pass electrical Bessel filter with a 3-dB
bandwidth of 8.5 GHz. The noise-equivalent bandwidth [24]
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Fig. 2. Comparison of the formula (50) with the time-domain Monte
Carlo method for computing the @) factor as a function of the OSNR for
the RZ raised-cosine format for different noise polarization states with
DOP,, = 0.5. These results are for a horizontally polarized optical signal. The
noise-equivalent bandwidth of the OSA was 25 GHz. The curves show the
results obtained using (50), and the symbols show the results obtained using
Monte Carlo simulations. The solid curve and the circles show the results
when the polarized part of the noise is co-polarized with the signal. Similarly,
the dashed curve and the squares as well as the dotted curve and the triangles
show the results when the polarized part of the noise is in the left circular and
orthogonal linearly polarized states, respectively.

of the OSA was equal to 25 GHz. The parameters in (50) for
this system are £ = 0.6, = —18dB, kg = kK1 = 3,4 =
21~237FASE7ASE = ]., and ]-_‘SfASE = ]./2

In Fig. 1, we show the results using (50) with a solid line.
We obtained these results using only a single mark and a single
space of the transmitted bit string. We show the results for the
time-domain Monte Carlo method with a dashed line. We ob-
tained these results by averaging over 100 samples of the @
factor, where for each sample the means and standard deviations
of the marks and spaces were estimated using 128 b. The agree-
ment between the two methods is excellent, except for the statis-
tical error in the computation of the () factor using the time-do-
main Monte Carlo method. The numerical estimator of the stan-
dard deviation of the current due to noise using the time-do-
main Monte Carlo method is a biased estimator [29], which
contributes to the small systematic error in the estimation of
the @ factor using the time-domain Monte Carlo method. The
region between the dotted lines in Fig. 1 is the confidence in-
terval for the computation of the ) factor using the time-domain
Monte Carlo method for a string with 128 b. The confidence in-
terval, defined by the mean () factor plus and minus one stan-
dard deviation of the () factor, gives an estimate of the error in
the computation of the () factor using the time-domain Monte
Carlo method with a single string of bits. Since we used 100
strings to obtain an estimate of the @) factor using the time-do-
main Monte Carlo method in Fig. 1, its confidence interval is
ten times smaller [29] than the () factor computed from a single
bit string. In this figure, we show the confidence interval of the
mean () factor with error bars. In Fig. 1, the time-domain Monte
Carlo method obtained with a single bit string has a relative sta-
tistical uncertainty larger than 15% with a single string when
Q = 6.

For the second set of simulations, we used partially polarized
noise. In Fig. 2, we plot the @ factor versus the OSNR for a lin-
early polarized RZ raised-cosine signal with an optical extinc-
tion ratio of 18 dB. We used a 10-Gb/s back-to-back system and
added partially polarized noise with DOP,, = 0.5 prior to the
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QO-factor
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Fig. 3. Comparison of the ) factor as a function of the OSNR obtained using
(50) with experimental results for different modulation formats and receivers.
The noise-equivalent bandwidth of the OSA was 25 GHz. The curves show
the results obtained using (50), and the experimental results are shown using
symbols. The dotted—dashed curve and the diamonds show the results for the
RZ format with an electrical filter with a 3-dB bandwidth of 7 GHz. The solid
curve and circles show the results for the RZ format without the electrical filter.
The dashed curve and the squares show the results for the NRZ format with
an electrical filter with a 3-dB bandwidth of 7 GHz. The dotted curve and the
triangles show the results for the NRZ format without the electrical filter.

receiver. The receiver and the optical spectrum analyzer band-
width were the same as that used for Fig. 1. In Fig. 2, the curves
show the results obtained using (50) and the symbols show the
results obtained using Monte Carlo simulations. The solid curve
and circles show the results when the polarized part of the noise
is co-polarized with the signal. Similarly, the dashed curve and
the squares, and the dotted curve and the triangles show the
results when the polarized part of the noise is in the left cir-
cular and orthogonal linearly polarized states, respectively. The
agreement between (50) and Monte Carlo simulations is excel-
lent. When DOP,, = 0.5, the @ factor varies by about 60%
as we vary the polarization state of the noise. This variation oc-
curs because the signal-noise beating factor I's_ ssg in (33) de-
pends on the angle between the Stokes’ vectors of the signal and
the polarized part of the noise. The parameters in (50) for this
system are the same ones in Fig. 1, exceptthat ['asp_asg = 0.8
and I's_asg = 1 for the solid line, I's_asg = 0.5 for the
dashed line, and I's_ asg = 0.25 for the dotted line.

IV. RECEIVER MODEL VALIDATION WITH EXPERIMENTS

We now present a validation of (50) by comparison with two
sets of back-to-back 10-Gb/s experiments. In the first set of ex-
periments, the noise is unpolarized (DOP,, ~ 0). In the second
set of experiments, for which the noise is partially polarized
(DOP,, € [0,1]), the @ factor depends strongly on the polar-
ization state of the noise when the noise is partially polarized.
In both cases, the experiments agree well with our formula.

In Fig. 3, we plot the @) factor versus the OSNR obtained
using both simulations and experiments for RZ and NRZ signals
with unpolarized optical noise (DOP,, < 0.05) that is generated
by an erbium-doped fiber amplifier (EDFA) without input power
[30]. In the transmitter, we generated a 10-Gb/s pulse train using
an electroabsorption modulator (EAM). The data was encoded
on the pulse train using an electrooptic modulator (EOM). For
the NRZ signal, the EAM was bypassed. To avoid pattern depen-
dences in the EOM modulator that we used to encode the data,
we used the fixed pattern 01010 101. Therefore, these results
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TABLE 1
PARAMETERS OF THE MODULATION FORMATS USED IN FIG. 3 WITH
AND WITHOUT ELECTRICAL FILTER (EF)

Format locam)| ¢ ¢] K| K| M
RZ with EF ~18.0 | 3.49 | 0.44 | 351 | 3.51 | 388
RZ w/o EF ~180 | 591 | 074 | 317 | 3.17 | 177
NRZ with EF || —11.3 | 1.89 | 0.24 | 2.88 | 2.68 | 38.8
NRZ w/oEF || —11.9 | 1.95 | 025 | 281|279 | 177

provide an important baseline for future studies that will include
pattern dependences. The RZ pulse was Gaussian-shaped with
a FWHM of 23 ps, and the NRZ pulses had a rise time of 34 ps.
The optical extinction ratio was 18 dB for the RZ signal and 12
dB for the NRZ signal. At the receiver, an optical preamplifier
increased the signal and noise power so that the optical noise
dominated the electrical noise. The total power into the 20-GHz
photodetector was kept fixed at —2 dBm by tuning an attenu-
ator. The FWHM of the Gaussian optical filter was 187 GHz,
and either a fifth-order low-pass electrical Bessel filter with a 3-
dB bandwidth of 7 GHz or no electrical filter was used in the re-
ceiver. The photodetector and the scope limited the bandwidth
of the electric signal when no electrical filter was used. We ex-
perimentally verified that the combined frequency response of
the photodetector and the scope was well approximated by a
Gaussian filter with a bandwidth of 15 GHz. The noise-equiva-
lent bandwidth of the OSA was 25 GHz. A high-speed sampling
oscilloscope was used to measure the () factor at the same time
that the OSNR was measured. In Fig. 3, the curves show results
obtained using (50), and the symbols show the experimental re-
sults. The dotted—dashed curve and the diamonds show the re-
sults for an RZ format with the electrical filter. The solid curve
and circles show the results for the RZ format without the elec-
trical filter. The dashed curve and squares show the results for
the NRZ format with the electrical filter, and the dotted curve
and triangles show the results for the NRZ format without the
electrical filter. The parameters in (50) for the modulation for-
mats shown in Fig. 3 are described in Table 1.

In Fig. 3, we observe that the performance of the RZ format
is less sensitive than is the performance of the NRZ format to
variations in the characteristics of the receiver. Since the noise is
unpolarized, T'asp—ask = 1, and I's_asg = 1/2. The results
that we obtain using the formula (50) are in good agreement with
the experimental results shown in this figure. An increase of the
bandwidth of the electrical filter increases the amount of noise
in the decision circuit which degrades the system performance.
On the other hand, for systems with a 10-Gb/s RZ format, in-
creasing the electrical bandwidth from 7 to 15 GHz also reduces
the broadening of the RZ pulses, and thereby increases the elec-
tric current due to the signal in the marks. However, this same
effect does not occur in systems that use the NRZ format, since
the NRZ pulses have a much narrower bandwidth.

In the second set of experiments, we investigated the effect of
partially polarized noise on the system performance. In Fig. 4,
we plot the maximum and the minimum values of the () factor
as a function of the degree of polarization of the noise at the re-
ceiver DOP,,. These simulation and experimental results are for
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Fig. 4. Comparison of the () factor as a function of the degree of polarization
of the noise DOP,, obtained using (47) with experiments for different
polarization states of the signal and of the noise. The solid curve shows the
result obtained using (47), and the circles show the experimental results when
the Jones vectors of the signal and the polarized part of the noise are orthogonal.
The dashed curve shows the result obtained using (47), and the squares show
the experimental results when the signal is co-polarized with the polarized part
of the noise.

an RZ signal with optical noise added by two EDFAs without
input power [31]. The RZ pulse was Gaussian-shaped with a
FWHM of 23 ps. In the simulations, we used a perfect optical
extinction ratio. The receiver consisted of a photodetector, an
optical filter, and an electrical amplifier. We used the method de-
scribed in [5] to obtain the () factor from the BER margin mea-
surements. Bergano et al. [5] showed that the ) factor obtained
from BER margin measurements is well correlated to the BER.
The first optical amplifier generated unpolarized noise, and the
noise generated by the second optical amplifier was polarized
by passing it through a polarizer and a polarization controller.
The degree of polarization of the noise DOP,, was controlled
by adjusting two variable attenuators that follow the two optical
amplifiers. The direction on the Poincaré sphere of the normal-
ized Stokes’ vector sgf ) of the polarized part of the noise was
adjusted by the polarization controller that follows the polar-
izer. The SNR of the electric current of the marks SNR, which
was defined in (36), was fixed at 10.9 dB. The FWHM of the
Gaussian optical filter was 187 GHz, and the frequency response
of the photodetector and electrical amplifier was modeled by a
Gaussian electrical filter with a 3-dB bandwidth of 15 GHz.

In the experiment, for each value of DOP,,, we varied the
angle between the Stokes’ vectors of the signal and the polarized
part of the noise and recorded the maximum value (.« and
minimum value Q,;n of the ) factor. In the simulations, we
obtained Qmax by choosing the Stokes’ vectors of the sig)nal
and the polarized part of the noise to be antiparallel s, - s%" =
—1 so that the corresponding Jones vectors are orthogonal to
each other. Similarly, we obtained @) ,,;, by choosing the Stokes’
vectors s, and sP) to be parallel s, - s = 41,

In Fig. 4, the curves show results obtained using (47), and the
symbols show the experimental results. We observed an excel-
lent agreement between the formula (47) and the experimental
results. The solid curve and circles show the maximum value of
the @ factor versus DOP,,, while the dashed curve and squares
show the minimum value of the @) factor. As the DOP of the
noise increases from O to 1, we observe a dramatic increase
in the range [Qmin, @max] Of the @ factor. For this receiver,
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the parameters in (47) are p = 38.6,k1 = 1.7,K9 = 0, and
ae = 0. When the noise is depolarized (DOP,, = 0), one has
Tasg-ase = 1, and I's_asg = 1/2. When the noise is com-
pletely polarized (DOP,, = 1), one has I'asg_asg = 1/2 so
that I's_ asg = 1 when the noise is co-polarized with the signal,
and I's_ asg = 0 when the polarization state of the noise is or-
thogonal to the signal. The results that we show in Figs. 2 and 4
illustrate the significant impact that partially polarized noise can
have on the performance of an optical fiber transmission system.
Typical values for the PDL per optical amplifier in optical fiber
systems range from 0.1 to 0.2 dB [2], which can partially po-
larize the optical noise in the transmission line. In a prototypical
system described in [15], which has 270 amplifiers with 0.15 dB
of PDL per amplifier, the average-noise DOP at the receiver is
equal to 0.15. However, in this prototypical system, the proba-
bility that the DOP of the noise exceeds 0.3 is larger than 103.

V. CONCLUSION

In conclusion, a formula has been derived that relates the )
factor to the OSNR for amplitude-shift-keyed optical fiber trans-
mission systems with arbitrary optical pulse shapes, arbitrary re-
ceiver characteristics, and arbitrarily polarized noise using a re-
alistic receiver model. In this paper, the enhancement factor and
three other parameters were also defined that explicitly quantify
the performance of different modulation formats. This method
was validated by comparison with back-to-back 10-Gb/s exper-
iments and Monte Carlo simulations. The proposed method was
used to show that the RZ format is less sensitive to variations in
the receiver than the NRZ format, and this conclusion was ex-
perimentally validated. The method developed can be used in
receiver optimization studies, and it can also be applied to the
study of other amplitude-shift-keyed formats. This method ac-
counts for partially polarized noise, which can be produced by
PDL and PDG in optical amplifiers. Computer simulations and
laboratory experiments were used to quantify the strong depen-
dence of the system performance on the polarization state of the
noise relative to that of the signal when the optical noise is par-
tially polarized. Therefore, this method can be used in combina-
tion with reduced system models to study the combined effect
that the polarization effects have on the system performance.
Since the method is computationally efficient, it can also be used
as a baseline for the analysis of transmission systems that have
pattern dependences due to effects such as chromatic dispersion,
PMD, and the Kerr nonlinearity.

APPENDIX

In this Appendix, tables are provided for the effective number
of noise modes p; the signal-noise beating parameters; ko and
1 for the spaces and marks, respectively; and the enhancement
factor £. The results are for back-to-back systems with typical
RZ and NRZ modulation formats and typical receiver filters.
These tables allow one to easily calculate the @) factor for such
systems without having to compute the multiple integrals in (26)
and (29).

The parameters p, g, k1 and & satisfy the following scaling
laws. First, they are independent of the power in the signal.



1488

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005

TABLE 1I
NUMBER OF EFFECTIVE NOISE MODES FOR A GAUSSIAN OPTICAL FILTER AND FIFTH-ORDER ELECTRICAL BESSEL FILTER
Awe/Awj| 0.08 0.10 0.12 0.16 0.20 0.30 0.40 0.80
I 18.22 14.62 12.23 9.26 7.50 5.21 4.11 2.6
TABLE Il

COMMON VALUE OF THE SIGNAL-NOISE BEATING PARAMETERS ko AND £; FOR THE RZ MODULATION FORMAT
WITH A GAUSSIAN OPTICAL FILTER AND FIFTH-ORDER ELECTRICAL BESSEL FILTER. FIRST AND SECOND
SUBSCRIPTS ARE AW, min FOR Ko AND k1, RESPECTIVELY

TsAw, H Awe/Aw,
H 0.08 l 0.10 | 0.12 ] 0.16 | 0.20 ] 0.30 | 0.40 L0.80
0.5 2.7360,40 | 2.7T150.40 | 2.6840,30 | 2.6330,10 | 2.5630,10 | 2.3620,10 | 2.1820,10 | 1.7310,10
1.0 3.1860,40 | 3-1350,40 | 3-0740,30 | 2.9330,10 | 2-7930,10 | 2.4710,10 | 2-2210,10 | 1.7310,10
1.5 3.3260,40 | 3-2350,10 | 3-1450,10 | 2.9940,10 | 2-7830,10 | 2-4410,10 | 2.2110,10 | 1.7310,10
2.0 3.3360,40 | 3-2150,10 | 3-0950,10 | 2.8940,10 | 2.7340,10 | 2.4210,10 | 2-2010,10 | 1.7310,10
2.5 3.2870,40 | 3-1560,10 | 3-0350,10 | 2.8450,10 | 2-6940,10 | 2.4110,10 | 2.1910,10 | 1.7310,10
3.0 3.2270,40 | 3-0860,10 | 2.9760,10 | 2.7950,10 | 2-6610,10 | 2.4010,10 | 2.1910,10 | 1.7310,10
TABLE 1V

ENHANCEMENT FACTOR £ FOR THE RZ MODULATION FORMAT, WITH A GAUSSIAN OPTICAL FILTER AND
FIFTH-ORDER ELECTRICAL BESSEL FILTER. SUBSCRIPTS SHOW THE CORRESPONDING VALUES OF AW, min

TsAw, ” Awe/Aw,
[008 [010 [0.12 [0.06 [020 [030 040 0380
05 0755 |0.93s0 |Llls | 1463 | L1790 25010 |3.0610 | 4151
1.0 09050 | T.11so | 1313 | 1.675 | 1.99% | 25620 | 2.902 | 3.3
1.5 0.925¢ 1.1249 1.303¢ 1.6030 1.833 2.1839 2.3539 2.5530
2.0 0.905¢ 1.0849 1.2349 1.4649 1.6149 1.8249 1.914 2.0149
25 087s0 | 1.0250 | 1145 | 1.31s | 14150 | 1545 | 1.59%0 | 1.64s0
3.0 08360 | 09660 | 1.05eo | 11760 | 1.2460 | 13260 | 1.3560 | 1.3%0
TABLE V

VALUES (no, K1) OF THE SIGNAL-NOISE BEATING PARAMETERS FOR THE NRZ MODULATION FORMAT
WITH A 50-GHz GAUSSIAN OPTICAL FILTER AND FIFTH-ORDER ELECTRICAL BESSEL FILTER

Rise Time(s)| Aw,/Aw,

[[ 008 [ 012 [ 016 [020 [ 030 [ 040
20 (1.383.08) | (2.19.2.80) | (2.632.66) | (2.58,2.58) | (2.34,2.37) | (2.18,2.18)
30 (149,3.09) | (2.14,2.82) | (2.58,2.68) | (2.56,2.58) | (2.35,2.37) | (2.18,2.18)
40 (157,3.10) | (2.12,2.84) | (257270) | (2.57.2.59) | (2352.37) | (2.17,2.18)
50 (1.69,3.10) | (2.14,2.86) | (2.44271) | (2482.61) | (233,2.38) | (2.17,2.18)
60 (1.813.09) | (2.19.2.86) | (2402.72) | (2.442.61) | (2.33,2.38) | (2.16,2.18)

Second, for a given pulse shape and given optical and electrical
filter shapes

(Awe, Aw,) = u(Aw,./Aw,) (58)

that is, 4 only depends on Aw, /Aw, and not on (Aw,, Aw,),
and

Ki(Awe, Aw,, Ts) = Ki(Awe /Aw,, TsAw,), 1=1,2
E(Awe, Aw,, Ts) = E(Awe /Aw,, Ts Aw,) (59)

where Aw, is the f3 4 bandwidth of the electrical filter, Aw,
is the full-width at half-maximum (FWHM) of the optical filter,
and 7, is the FWHM of the optical pulse. In the derivation of
(59), it was assumed that there are no bit-patterning effects, i.e.,
(59) holds for an isolated mark or space.

For all the results presented here, a Gaussian optical filter
and a fifth-order electrical Bessel filter were used. In Table II,
values are provided for g as a function of Aw,/Aw,. Table III
shows the common value of kg ~ r; as a function of Aw, /Aw,

and 7, Aw, for a 10-Gb/s RZ modulation format with Gaussian-
shaped pulses and an optical extinction ratio of 15 dB. Due to
bit-patterning effects, the values in Table III are only valid for
optical bandwidths larger than Aw, min. The first subscript on
each of the values in Table III shows the values of Aw, min for
which the relative error between the actual values of xq at all
bandwidths Aw, > Aw, min and the value in the table are less
than 10%. The second subscript shows the corresponding value
of Aw,, min for £1. In most cases, the relative error is less than
about 2% when Aw, > Aw, min + 15 GHz. Table IV shows
the corresponding values of the enhancement factor &, with the
subscript indicating the value of Aw, min. For all the results in
this Appendix, a De Bruijn pseudorandom bit pattern of length
26 was used, the time and frequency domains were discretized
using 8192 points, and the parameters were computed using the
space with the largest voltage and the mark with the smallest
voltage in the electrically filtered signal at the clock-recovery
time.
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TABLE VI
ENHANCEMENT FACTOR ¢ FOR THE NRZ MODULATION FORMAT, WITH A 50-GHz GAUSSIAN
OPTICAL FILTER AND FIFTH-ORDER ELECTRICAL BESSEL FILTER
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Rise Time || Aw./Aw,

[ 0.08 [012 0.16 [ 020 0.30 0.40
20 0.77 0.90 093 094 094 0.94
30 0.76 0.89 094 0.95 0.95 0.95
40 0.74 0.87 0.92 094 0.96 0.96
50 0.72 0.85 0.90 093 0.95 0.95
60 0.69 0381 0.87 0.90 0.92 093

Table V shows the values of (g, 1) for a 10-Gb/s NRZ mod-
ulation format with an optical extinction ratio of 15 dB and an
optical filter bandwidth of Aw, = 50 GHz. The different rows
in the table correspond to different rise times for the NRZ signal.
In Table VI, the corresponding values of ¢ are shown. It does
not make sense to scale the widths of the pulses of the NRZ
signal, unless one also scales the bit rate. To investigate how the
parameter values depend on the bandwidth of the optical filter,
simulations were also performed for the NRZ format using an
optical filter with an FWHM of 25 GHz. It was found that the
values k25, k%> and £2° for the 25-GHz bandwidth optical filter

are related to the entries £5°, £3° and £°° in Tables V and VI by
k2% = 0.89k5° +0.13 (60)
kP =0.87k50 £ 0.07 (61)
€25 =1.966°° £ 0.04. (62)
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