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Evaluation of the Very Low BER of FEC Codes
Using Dual Adaptive Importance Sampling

R. Holzlöhner, A. Mahadevan, C. R. Menyuk, J. M. Morris, and J. Zweck

Abstract— We evaluate the error-correcting performance of
a low-density parity-check (LDPC) code in an AWGN channel
using a novel dual adaptive importance sampling (DAIS) tech-
nique based on multicanonical Monte Carlo (MMC) simulations,
that allows us to calculate bit error rates as low as 10−19 for a
(96, 50) LDPC code without a priori knowledge of how to bias.
Our results agree very well with standard MC simulations, as
well as the union bound for the code.

Index Terms— Very low BER, multicanonical Monte Carlo,
importance sampling, LDPC codes.

I. INTRODUCTION

THE accurate computation of very low bit error rates
(BERs) for forward error correcting (FEC) codes depends

on sampling the very rare noise realizations that lead to
errors in the decoded bit sequence. These rare events cannot
be adequately sampled using standard Monte Carlo (MC)
simulations. Importance sampling (IS) [1] has been used to
enhance the occurrence of these events in FEC codes. How-
ever, for IS to be effective, a biased distribution must be chosen
using some knowledge of which noise realizations most likely
generate errors. This task is difficult when iterative decoding
algorithms are used, since codeword errors are correlated to
the noise distribution among the bits in a highly complex way.

We apply the multicanonical Monte Carlo (MMC) simula-
tion technique of [2] as the basis for a dual adaptive impor-
tance sampling (DAIS) technique to compute very low BERs.
We demonstrate the DAIS technique using a (96, 50) low-
density parity-check (LDPC) code and sum-product decoding
(SPD) [3] with up to 50 decoder iterations, achieving BER
≈ 10−19. Like standard IS [1], MMC increases the number of
events in the tail of the pdf being computed by sampling from
a biased pdf [4]. The advantage of MMC is that it adaptively
iterates to this biased pdf with little a priori knowledge needed
of how to bias. The iterative procedure uses a control quantity
to update the next iteration’s biased pdf so that, as the iteration
number increases, there tends to be an approximately equal
number of hits in each control-quantity histogram bin [2].

II. SIMULATION PROCEDURE AND RESULTS

We study the performance of a regular (96, 50) LDPC code
with a code rate of R = 50/96 in an AWGN channel with
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BPSK using DAIS. The parity-check matrix (H) of this code
can be found at [5]. We choose this code because it was:
(1) the same code studied in [1], and (2) possible to exactly
compute the first two non-trivial coefficients of the code’s
weight enumerator function (3 and 24 codewords at Hamming
weights 6 and 8, respectively), which allows us to compare our
simulation results with the code’s union-bound performance
[6]. Note that both [1] and [5] refer to this code as a (96, 48)
code, but 2 of the 48 rows of H are linearly dependent.

We implemented SPD [3] employing the log-likelihood
modification of [7], and symmetric signal levels of +1 and
−1 for logical 1s and 0s, respectively. The pdf ρl of the
noise in the lth bit at the receiver is zero mean Gaussian with
σ2 = 1/(2R Eb/N0) [3]. It suffices to transmit the all-zeros
codeword, since the code is linear and the noise is symmetric.

Let Γ be the n-dimensional probability space of the noise in
the n bits of a codeword. The noise vector z = (z1, . . . , zn) is
multivariate Gaussian with joint pdf ρ(z) =

∏n
l=1 ρl(zl). The

MMC algorithm is controlled by a scalar control quantity V

defined here as V (z) =
{

1
n

∑n
l=1 [H(qlzl) zl]

2
}1/2

, where

ql = (−1)bl with bl being the transmitted bit in the lth
position, and H(x) = 1 if x > 0 and H(x) = 0 otherwise.
We constructed V (z) so that a noise component zl contributes
to V only if it may produce a bit-error at the input to the
decoder. We say that a received word with a noise realization
z generates an error, if the LDPC decoder cannot decode it to
the transmitted codeword within 50 iterations.

Given a range [Vmin, Vmax] for V , we partition Γ into M
subsets Γk = {z ∈ Γ |Vk−1 ≤ V (z) < Vk}, where
Vk = Vmin + k∆V, 1 ≤ k ≤ M , and ∆V = Vk − Vk−1

= (Vmax − Vmin)/M is the width of each bin in the partition
of [Vmin, Vmax]. Let Pk be the probability of selecting a
realization z from ρ so that z ∈ Γk [4], [8]. Then,

Pk =
∫

Γ

χk(z)
ρ(z)
ρ∗(z)

ρ∗(z) dz ≈ 1
N

N∑
i=1

χk(z∗,i)
ρ(z∗,i)
ρ∗(z∗,i)

,

(1)
where ρ∗(z) is a positive biasing pdf, χk(z) = 1 if z ∈ Γk

and χk(z) = 0 otherwise, and the z∗,i are N random sample
points in Γ, selected according to the pdf ρ∗(z). The variance
of the estimate of (1) is zero if the optimal biasing pdf
ρ∗opt(z) = χk(z)ρ(z)/Pk is used. However, ρ∗opt(z) depends
on Pk, which is initially unknown. In standard IS, one uses
physical intuition to guess a biasing pdf that is close to ρ∗opt.
The MMC algorithm instead iterates over a sequence of
biasing pdfs ρ∗,j that approach ρ∗opt. We define ρ∗,j for the
jth iteration by ρ∗,j(z) = ρ(z)/(cjP j

k ), where k is such that
z ∈ Γk is satisfied. The quantities P j

k satisfy P j
k > 0 and
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∑M
k=1 P j

k = 1, and cj is an unknown constant that ensures∫
Γ

ρ∗,j(z) dz = 1. The vector P j
k , k = 1, . . . ,M , is the key

quantity in the MMC algorithm and completely determines
the bias. At the first MMC iteration, P 1

k is usually set to
1/M, ∀k = 1, . . . ,M .

Within each MMC iteration j, we employ the Metropolis
algorithm [9] to produce a random walk of samples z∗,i

whose pdf equals ρ∗,j(z). We consider a Markov chain of
transitions consisting of small steps in the noise space. Each
transition goes from z∗,i = z∗a ∈ Γka

to z∗b = (z∗a + εj∆z) ∈
Γkb

, where ∆z is random and symmetric, i.e., it does not
favor any direction in Γ, and the transition is accepted with
probability πab. If a transition from z∗,i to z∗b is accepted,
we set z∗,i+1 = z∗b , else we set z∗,i+1 = z∗,i = z∗a. The
ratio πab/πba equals ρ∗,j(z∗b)/ρ∗,j(z∗a), which is the detailed
balance condition that ensures that the limiting (stationary)
pdf for infinitely many steps of this random walk is ρ∗,j [9].

We consider the perturbation of the noise component in each
bit z∗a,l of z∗a separately, and accept or reject it independently

with the probability min
[
ρl(z∗b,l)/ρl(z∗a,l), 1

]
. We pick each

perturbation ∆zl from a zero mean symmetric pdf. We obtain
a trial state z∗b in which only some of the components are
different from their previous values in z∗a. Next, we compute
kb, the bin corresponding to z∗b , and finally accept the step

from z∗a to z∗b with the probability min
[
P j

ka
/P j

kb
, 1

]
.

In each iteration, the perturbation coefficient εj is constant
for all samples. After each iteration, we adjust εj so that
the acceptance ratio α � (number of accepted steps)/(total
number of steps, N ) is close to 0.3 (empirically chosen based
on experience from previous experiments). The minimum
required N for this random walk depends on the average
step size αεj 〈|∆z|〉 and hence is system-dependent. The
noise realizations are recorded in the histogram H∗,j , where
H∗,j

k =
∑N

i=1 χk(z∗,i) is the number of the z∗,i in iteration j
that fall into Γk. The P j

k are updated after each MMC
iteration using the recursion relations given in [8] based on
the histogram H∗,j . As j increases, the expected number of
samples 〈H∗,j

k 〉 becomes independent of the bin number k,
which implies that P j

k → Pk.
Let Perr be the probability that a received word with noise

realization z selected from ρ leads to an error, and Perr,k the
probability that z leads to an error and falls into bin k. Then

Perr,k = Perr|k Pk = Pk|err Perr, (2a)

Perr =
M∑

k=1

Perr,k, (2b)

where Perr|k and Pk|err are the conditional probabilities of an
error given that z falls into bin k, and vice versa. We can
compute Perr by first running an MMC simulation as described
above, where we also count the errors in bin k to produce a
histogram G∗,j

k . We can then approximate Perr|k ≈ P jmax

err|k =∑jmax

j=1 G∗,j
k /

∑jmax

j=1 H∗,j
k after jmax MMC iterations. Summing

over all MMC iterations is valid since the biasing pdf at
any MMC iteration only affects the total number of hits in
a bin, but not the behavior of error hits relative to the total
hits within a bin. Finally, we can use the left equation of
(2a), and equation (2b) to get Perr. In Fig. 1(a) we show the

approximation (P jmax

err|k P jmax+1
k )/∆V to Perr,k/∆V with dots

for Eb/N0 = 11 dB. The dashed line shows Pk/∆V , and
the circles show the sum of the error histograms

∑jmax

j=1 G∗,j
k .

The number of sampled errors rapidly decreases to 0 as
V decreases towards 0.4, which is where Perr,k tends to
be largest. Consequently, the approximation Perr|k ≈ P jmax

err|k
converges very slowly as the iteration number j increases.
The reason is that in this unconstrained MMC simulation, we
have not sampled enough of the higher-probability smaller-
noise realizations that generate errors.

One efficient method to overcome this undersampling prob-
lem is to run a second, constrained MMC simulation (hence
the term dual in DAIS), in which we only accept Metropolis
steps that lead to errors. If a trial realization z∗b does not
yield an error in this simulation, we set πab to zero. The
constrained simulation, hence, takes its samples from ρ̃(z) =
χerr(z)ρ(z)/Perr, where χerr(z) = 1 if z produces an error
and χerr(z) = 0 otherwise. Note that ρ̃(z) is proportional to
ρ(z) wherever χerr(z) = 1. If the Metropolis random walk
is ergodic in the error subset of Γ, the constrained MMC
simulation approximates Pk|err. Since the Perr,k and Pk|err

estimates obtained using the two simulations are both smooth
for large k, using (2a) we can obtain Perr = Perr,k/Pk|err from
the data where k is large. In Fig. 1(a), the dash-dot line shows
Pk|err/∆V obtained from the constrained simulation, while the
solid line shows the resulting Perr,k/∆V obtained by scaling
Pk|err/∆V to fit Pk/∆V from the unconstrained simulation
for 0.55 < V < 0.6. Since MMC yields a similar number
of samples in each bin, the relative statistical sampling error
of Pk|err in the constrained simulation is smaller at small V
than in the unconstrained simulation. A significant advantage
of running separate unconstrained and constrained simulations
is that the algorithm optimizes the perturbation coefficients εj

of the two simulations independently. The values of εj tend
to differ strongly between the two simulations.

In our simulations, M = 300. In the first iteration N j=1 =
5000 samples in the unconstrained case and N j=1 = 10, 000
in the constrained case, and we increase the number of samples
after each iteration so that N j+1 = 1.3N j . In each case, P 1

k =
1/M, k = 1, . . . , M , and we assume the simulation to have
sufficiently converged when maxk |(P j

k−P j+1
k )/P j+1

k | < 0.1.
This convergence requires ≈ 106 to 108 samples in total, with
the samples increasing on average with increasing Eb/N0.
Also, in both cases, we initialize each MMC iteration with
a z that gives a decoder error.

In Fig. 1(b), the × and + symbols denote the decoder output
BER and WER estimates, respectively, obtained via MC.
The dashed curve with � and dash-dot curve with ◦ denote
the decoder output BER and WER estimates, respectively,
obtained using DAIS. Finally, the solid curve and dotted curve
denote the BER and WER union bounds, respectively [6].

The union bound can be closely approximated at high
Eb/N0 by the contribution of low Hamming weight (6 and 8 in
this case) codewords. The SPD for LDPC codes approximates
the ML decoder [10]. Hence, we would expect the SPD
to perform worse than the union bound on ML decoding
at high Eb/N0. Our results from DAIS are consistent with
this expectation and indicate that DAIS can simulate WER
and BER performance of codes at very low values. We also
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Fig. 1. (a) Dashed curve: Pdf of V . Dots: joint pdf of V and errors, both from
the unconstrained simulation. Dash-dot curve: pdf of V conditioned on errors
from constrained simulation. Solid curve: joint pdf of V and errors obtained
by scaling dash-dot curve to fit the dots for V > 0.55. Circles: Number
of decoder errors in the unconstrained simulation. (b) Cross and plus sym-
bols: MC BER and WER estimates, respectively. Dashed curve with squares
and dash-dot curve with circles: DAIS BER and WER, respectively. Solid
and dotted curves: BER and WER union bound approximations, respectively,
based on codewords at Hamming weight 6 and 8 [6].

observe excellent agreement between the results obtained by
DAIS and MC, wherever MC results are available (DAIS falls
within the 99% error bars for MC), which further validates
DAIS.

Our argument that the true code performance should be
close to the union bound at high Eb/N0 is further bolstered by
the observation that for MC simulations, as Eb/N0 increases,
the contribution of the probability of decoding-to-wrong-
codewords progressively dominates the WER. For example, at
Eb/N0 = 4dB, 216 of 1888 word errors recorded were due to
decoding to wrong codewords (the rest were decoder failures),
whereas at Eb/N0 = 7dB, the corresponding numbers were
40 of 52. Note that the BER results in [1] are farther away
from the union bound than our results (by about 0.4 dB at BER
= 10−9), which may be attributed to their use of ≤ 5 iterations
for the SPD, and possibly a different decoder implementation.

We note that our BER data points do not show a waterfall
region since they correspond to large Eb/N0 relative to the
Shannon limit (≈ 0 dB for our code), and since the code
is not very long. We earlier obtained BER estimates down
to 10−39 for a smaller (20, 7) code, but space limitations
preclude presenting these results.

A measure of DAIS’s gain over MC is given by the ratio
of the number of samples (codewords) required to achieve
a given WER at a given Eb/N0; e.g., at Eb/N0 = 10 dB,
WER ≈ 10−14 is obtained by DAIS using 8× 107 codewords
(unconstrained) + 3 × 107 codewords (constrained) = 11 ×
107 codewords (total), whereas MC would require ≥ 1015

codewords (assuming ≥ 10 word error events). Thus the gain
is 1015

11×107 ≈ 9 × 106. Our current experience suggest that
DAIS’s gain increases with decreasing WER, but the accuracy
of DAIS as an estimator, and its dependence on the number of
codewords or codeword length, is unknown at this time, and
a subject of continuing research.

We are currently studying DAIS for longer codes. As code
length increases, dimensionality of Γ and its partitions that
map to bins of V increases. Hence, maintaining a given level
of statistical accuracy in sampling each partition of Γ requires
more samples for the longer code.

III. SUMMARY AND CONCLUSIONS

We presented a dual adaptive importance sampling (DAIS)
technique based on multicanonical Monte Carlo (MMC) sim-
ulations, and used it to study an LDPC code in an AWGN
channel. It allows us to calculate very low WERs and BERs.
In contrast to standard importance sampling [1], the MMC al-
gorithm iteratively approaches the optimal bias without a priori
knowledge of how to bias. We improve the WER and BER
estimates by combining the results of two MMC simulations
in the large noise regions where statistical uncertainty due to
sampling from the biased pdf is smallest. In one simulation, we
approximate the probability of decoder errors in the large noise
regions. In a second complementary simulation, we constrain
the MMC random walk to the noise region that produces
decoder errors. Our WER and BER results are consistent with
standard Monte Carlo simulations and the union bound on
maximum-likelihood decoding [6].
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