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Abstract— We report here on our investigations of the
Manakov-polarization mode dispersion (PMD) equation which
can be used to model both nonreturn-to-zero (NRZ) and soliton
signal propagation in optical fibers with randomly varying
birefringence. We review the derivation of the Manakov-PMD
equation from the coupled nonlinear Schr̈odinger equation, and
we discuss the physical meaning of its terms. We discuss our
numerical approach for solving this equation, and we apply this
approach to both NRZ and soliton propagation. We show by
comparison with the coupled nonlinear Schrödinger equation,
integrated with steps that are short enough to follow the detailed
polarization evolution, that our approach is orders of magnitude
faster with no loss of accuracy. Finally, we compare our approach
to the widely used coarse-step method and demonstrate that the
coarse-step method is both efficient and valid.

Index Terms—Birefringence, optical fibers, polarizations, ran-
dom bifringence, solitons.

I. INTRODUCTION

BECAUSE of their low loss, optical fibers have become
an important medium for long-distance communications.

Even though the glass fiber is a remarkably linear transmission
medium, its slight nonlinearity, due primarily to the Kerr
effect, became important with the advent of the erbium-
doped optical amplifier that permitted transmission of light
signals through optical fibers over transoceanic distances with-
out regeneration, allowing the effect of the nonlinearity to
accumulate over the entire distance.

When light travels in an optical fiber for thousands of
kilometers, the effect of the nonlinearity can no longer be
ignored. On the one hand, it can lead to significant sig-
nal distortion—particularly when coupled with the sponta-
neous emission noise due to the erbium-doped fiber amplifiers
(EDFA’s); on the other hand, it can be used to counteract
dispersion, as in solitons. The development of communications
technology has made it necessary to develop mathematical
tools for describing light transmission in nonlinear optical
fibers. Hasegawa and Tappert [1] showed that when the slowly
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varying envelope approximation applies, which is the case in
communication signals to date [2], and fiber birefringence
can be ignored, then the transmission is well-described by
the nonlinear Schrödinger equation. Unfortunately, it is of-
ten impossible to ignore the fiber birefringence, particularly
in modern-day NRZ (nonreturn-to-zero) communications, in
which polarization scrambling is consistently used. Menyuk
[3] showed that the CNLS (coupled nonlinear Schrödinger
equation) applies to birefringent optical fibers, but early work
focused on fibers with constant birefringence [4]. In the pa-
rameter regime in which present-day communication systems
operate, the birefringence is large in the sense that the beat
lengths are typically 10–100 m, while the dispersive and
nonlinear scale lengths are hundreds of kilometers—but is
rapidly varying in the sense that the length scale on which
the birefringence orientation varies is 0.3 to 300 m. When
nonlinearity can be ignored, Poole and Wagner [5]–[7] showed
that the large but rapidly and randomly varying birefringence
leads to PMD (polarization mode dispersion), which is a
very important effect in communication fibers. An important
advance in dealing with both nonlinearity and the rapidly
varying birefringence was made when it was recognized that if
the polarization states of the light is averaged over the Poincaré
sphere, the Manakov equation can be derived from the CNLS
[8], [9]. However, the assumption that the polarization states
are mixed on the Poincaré sphere was not justified, and the
nature of the correction terms was not completely elucidated,
although it was recognized that they are important [8]; it
is these terms that are responsible for PMD. Since then,
in a series of works that carefully investigated the statistics
on the Poincaŕe sphere using physically reasonable models
[10], [11], we were able to justify the assumption in [8]
and [9] and to elucidate the nature of the corrections to the
Manakov equation. This work culminated in the derivation of
the Manakov-PMD equation [11] which it is the object of this
paper to study.

It is our view that the derivation of the Manakov-PMD
equation completely resolves the outstanding theoretical issues
concerning appropriate models for modeling birefringence in
optical fibers. Moreover, this equation leads to highly rapid
numerical schemes and can be used to justify the widely
used coarse-step method. From a physical standpoint, the
mathematical transformation that allows us to derive the
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Manakov-PMD equation from the CNLS equation amounts to
freezing the linear motion of the signal’s central frequency on
the Poincaŕe sphere. Since the motion of the other frequencies
in the signal and the changes due to nonlinearity are slow
relative to this point’s motion on the sphere, we can take long
computational steps. The terms that appear in the Manakov-
PMD equation have a transparent physical meaning. There are
two terms that account for the Kerr nonlinearity averaged over
the Poincar´e sphere and chromatic dispersion; these are the
terms that appear in the Manakov equation. There is another
term that corresponds to the usual linear PMD and when both
chromatic dispersion and nonlinearity can be neglected, this
term yields all the effects that Poole and others have described.
Finally, there are additional nonlinear terms that have not
been previously discussed in detail (but see [11]) and that
we refer to as nonlinear PMD terms. We will show that these
terms, which are due physically to incomplete mixing on the
Poincaŕe sphere, are vanishingly small in cases of present-
day, practical importance in optical communications and can
safely be ignored in these cases.

At the present time, most simulations of polarization effects
in long-distance optical fiber transmission are done using a
somewhatad hocprocedure that is discussed in [8] and [9] and
that we refer to here as the coarse-step method. The starting
point for this approach is the CNLS without the rapidly varying
terms that is described in [3] and [4]. One then integrates
these equations using step sizes that are large compared to
the fiber correlation length—typically several kilometers—and
then randomly rotates the data on the Poincar´e sphere. This
approach leads to an artificially increased fiber correlation
length, but one also artificially reduces the strength of the
birefringence. By doing so, one can obtain the same magnitude
for the linear PMD as one would in simulations which use
realistic fiber correlation lengths and birefringence strengths,
and one realizes an enormous saving in computation time. We
shall show in this paper that this approach, as it has been
used to date, both exaggerates the nonlinear PMD and deals
with it inaccurately, but we will also show that the nonlinear
PMD is so small in cases of present-day practical importance
in long-distance communication systems that this exaggeration
does not matter. Moreover, we will show how to eliminate this
difficulty. Thus, our work provides a theoretical justification
for the use of the coarse-step method.

The reminder of this paper is organized as follows: In
Section II, we review the derivation of the Manakov-PMD
equation, and in Section III, we discuss the numerical algo-
rithms for solving it. In Section IV, we apply this equation
to examples of NRZ and soliton communication signals, and
we discuss the nonlinear PMD. In Section V, we compare the
Manakov-PMD equation to the coarse-step method. Section VI
contains the conclusions.

II. DERIVATION OF THE MANAKOV -PMD EQUATION

In this section, we will review the derivation of the
Manakov-PMD equation that was earlier discussed in [11],
presenting it from a more physical perspective. Optical fibers
used in telecommunications are designed to support only a

single guided mode which, however, can exist in two mutually
orthogonal polarization [12]. In a perfectly isotropic, circularly
symmetric fiber the two polarization components of the
mode would travel with identical phase and group velocities.
Unavoidable fiber imperfections break this polarization
degeneracy so that at each point along the fiber there exists
a preferred direction perpendicular to its axis. A light field
polarized orthogonal to this direction has the smallest phase
and group velocity. We designate the propagation constant of
the wave polarized in the preferred direction as and the
propagation constant of the orthogonally polarized wave as.
The difference of these two propagation constants is defined
as the birefringence parameter . The specific
group delay per unit length is represented by
where the primes indicate differentiation with respect to the
angular frequency. In this paper, in contrast to our earlier
paper [11], we do not use normalized units so thatand
have the dimension of the inverse length, whileand have
dimensions of time divided by length. In this paper, we also
use to designate the preferred direction, rather than
as in [11] since is the geometric rotation angle. The angle

rotates randomly; and may also vary randomly.
Optical signals in fibers can be distorted due to a combi-

nation of several effects. First, if , the signals undergo
PMD [5]–[7]. Second, if the signals undergo
chromatic dispersion. Finally, optical fibers are weakly nonlin-
ear which means that the refractive index of the fiber material
changes as a function of the light intensity. The propagation
of light pulses, taking all these effects into account, can be
described by the coupled nonlinear Schrödinger equation [3],
[4]

(1)

or equivalently

(2)

which are written in a form that is appropriate for a fiber
with a randomly varying birefringence orientation. Here,

is a column vector with elements and which
are the complex envelopes of the two polarization components.
The vector is defined as , where designates
complex conjugation. The -coordinate measures distance
along the fiber axis, while the-coordinate represents retarded
time—the time relative to the moving center of the signal.
The matrix

(3)

is defined in terms of the Pauli’s matrices

I
(4)
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and by using the same matrix in the second and third
terms of (1), we are effectively assuming that the orientation
of the axes of birefringence is only a weak function of
frequency. The nonlinear Kerr coefficient is represented by
and the wavenumber by , where is the vacuum
wavelength of light. The parameter in (1) and (2) does not
have a subscript since we are assuming that .

A fundamental difficulty in solving (1) or equivalently (2)
is that changes on a length scale of 0.3–100 m, while the
length scales for PMD, chromatic dispersion, and the Kerr
nonlinearity are hundreds or even thousands of kilometers. If
one wishes to solve (1) accurately, taking into account rapid
and random variations of the birefringence, one must do so
on a very short length which is computationally expensive.
Moreover, the different physical effects that contribute to the
signal evolution in (1) are mixed together in a complicated
way. It is known that when the nonlinearity and chromatic dis-
persion can be ignored, the signal undergoes polarization mode
dispersion [5]–[7]. Conversely, when the PMD is small but the
birefringence is rapidly and randomly varying, it is known that
the Manakov equation applies. It is not immediately apparent
where in (1) these effects are embedded.

The Manakov-PMD equation resolves both these difficul-
ties. It not only allows us to develop a rapid numerical
scheme for determining the signal evolution with no loss
of accuracy, but the different physical effects are isolated in
separate terms of the equation that have a transparent physical
meaning. Thus, this equation is the natural starting point for
analysis of signal propagation in optical fibers. In particular,
we will use it to validate the widely used coarse-step method
in the parameter regime that is relevant to long-distance
communication systems.

To obtain the Manakov-PMD, we proceed in two successive
steps [11]. First, the field is transformed from the fixed
coordinate system to a coordinate system that rotates with the
principal axes of the fiber. The new field is designated by the
vector that is related to as follows:

R

(5)

If we consider a continuous wave (CW) signal at a single
frequency and neglect the fiber nonlinearity, then (1) reduces
to

(6)

and the transformation (5) implies [13]

(7)

where, letting , we find

(8)

Second, we introduce a new field vector via the unitary
matrix T

T (9)

whereT is the solution to the ordinary differential equation

T
T (10)

with the initial condition

T (11)

One then finds that (1) yields in the linear,
CW limit, so that is frozen on the Poincaré sphere in this
limit. In effect, the transformationT follows the rapid and
random motion of a single state on the Poincaré sphere. This
motion occurs on a length scale of 0.3–100 m. Of course,

is not frozen on the Poincaré sphere at all -points
except in the special case of a linear CW field. However, in
all cases of present-day interest in communication systems,
its evolution is quite slowly varying—on a length scale of
hundreds of kilometers, associated with the scale lengths of
PMD, chromatic dispersion, and nonlinearity. This physical
observation is at the heart of our approach.

After substitution of this transformation into (1), we obtain
the Manakov-PMD equation [11]

(12)

When the right-hand side is zero, (12) reduces to the Manakov
equation. The second term on the left-hand side of (12)
includes the effect of chromatic dispersion, and the third
term on the left-hand side of (12) includes the effect of Kerr
nonlinearity averaged over the Poincaré sphere with the well-
known 8/9 factor [8], [9]. We will show that the first term on
the right-hand side of (12) leads to the usual linear PMD that is
discussed in [5]–[7]. Finally, the second term on the right-hand
side of (12) is a new term that we refer to as nonlinear PMD.
Physically, it is due to incomplete mixing on the Poincar´e
sphere. To our knowledge, this effect has not been previously
discussed except briefly near the end of [11]. In this paper, we
will show that its effect is negligible in the parameter regime
in which communication fibers normally operate.

There are three quantities, , and , that require
special discussion. The matrixT defined in (9) and (10) is
a special unitary matrix so that it has the form

T (13)

with the additional constraint . We note that
our notation differs from that of [11] in which the vector

now corresponds to the continuous wave
signal of (7). The other solution of (7) is given by
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. We define the Stokes parameters of the CW wave
as

(14)

Using the solutions and , we also define

(15)

Defining the real vectors and recalling that
at and , it can be shown that
the are vectors on the Poincaré sphere [11] and that is
initially pointed in the -direction, is initially pointed in
the -direction, and is initially pointed in the -direction.
As T evolves in accordance with (10), the will wander on
the surface of the Poincaré sphere but will remain orthogonal
to each other. We have changed notation from that of [11] to
emphasize the geometric connection to vectors on the Poincaré
sphere. We now find that

T T (16)

We also find that where

(17)

and

(18)

The Manakov-PMD equation is useful from a conceptual
standpoint because each of the principal effects that contribute
to the signal evolution, the Kerr effect, chromatic dispersion,
and polarization mode dispersion are clearly separated. The
Manakov-PMD equation is useful from a numerical standpoint
because is slowly varying. The and that appear
in this equation are rapidly varying, but they are determined
by solving (10) which is merely a second-order ordinary
differential equation and can be rapidly solved. When solving
Eq. (12) on the slowly varying scale, one must properly
average over the rapidly varying terms, i.e., one must replace
the by , and we will discuss this issue
in the next section. In principle, it is possible to take advantage
of the central limit theorem to replace these averages with
appropriate random variables [11]. This issue is currently being
studied.

III. N UMERICAL APPROACH

The numerical approach that we follow in solving the
Manakov-PMD equation is closely related to the widely
used split-step operator technique that is used to solved the
nonlinear Schr̈odinger equation and the coupled nonlinear
Schr̈odinger equation and is discussed, for example, in [2]
and [4]. In this approach, time derivatives are evaluated
in the frequency domain while functional multiplications
are evaluated in the time domain. For the usual nonlinear
Schr̈odinger equation and the coupled nonlinear Schrödinger
equation, which do not take into account such complications as
the Raman effect, this prescription implies that the linear terms
are evaluated in the frequency domain while the nonlinear
terms are evaluated in the time domain. By splitting the spatial
step, so that the time domain evaluations are done in the middle
of the frequency domain evaluations, it is possible to maintain
second-order accuracy with one function evaluation per step
for each term at every node point. We also note, because it is
important in practice, that certain linear effects like chromatic
dispersion do not change the spectral intensity and certain
nonlinear effects like the Kerr nonlinearity do not change the
temporal intensity. In order to avoid numerical instabilities, it
is important that the numerical approximations of these effects
retain these properties to far higher than second order, even
though the overall scheme is only second-order accurate.

The vectors and are related to each other by a simple
unitary transformation which can be found by integrating
(10) and is rapidly determined, since it is only a second-
order ordinary differential equation, even though it must
be integrated on the short length scale given by the beat
length and fiber correlation length. In most practical cases,
it is not even necessary to transform from one to the other.
Since the electrical output current from a realistic detection
system is given by , it does not matter which
we use. We stress this point because in devising numerical
algorithms for solving (12) efficiently, we have found it
somewhat advantageous to work with (1) rather than (12).

The linear part of (1) may be written in the form

(19)

which in the Fourier domain becomes

(20)

The solution to (20) may be written

M (21)

where the transfer matrixM [14] satisfies the ordinary differ-
ential equation

M
M (22)

with the initial conditionM I, where I is the
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2 2 identity matrix. To calculateM , we subdivided
each interval into smaller subintervals , and in each
subinterval we set

m (23)

where

(24)

(25)

and the are constant in each subinterval. The total transfer
matrix is now expressed at

M m (26)

The transfer matrix includes the rapid motion over the
Poincaré sphere that occurs at the central frequency, but the
variation as a function of frequency will be quite small as long
as the interval is small compared to the PMD length scale.
One way to reach this conclusion is to note, using (5), (9),
and (21), that

T R

M R T (27)

Since T and R are independent of , and the change in
is small over the interval M must vary slowly

as a function of . Of course, we could directly calculate
M T R MRT, but this calculation is, in fact, slightly
more elaborate becausedepends on which has -function
jumps.

The transfer matrixM can be used to determine the
evolution of according to (21), or equivalently, we
can useM to determine . If , as
was typically the case in the examples that we chose, and
we calculatedM at each of the frequencies that we used
in the fast Fourier transform, then our procedure would still
be slow, although faster than direct integration of (1) using
the split step method by more than an order of magnitude.
However, the variation ofM as a function of frequency
is very slow on the length scale given by , and it is only
necessary to evaluateM at a few frequencies (typically 16)
and to interpolate between them with a second-order Lagrange
interpolation polynomial.

To demonstrate the slow variation ofM with , we
consider an example in which km, m,

m, ps/(km) , and
m, where is the fiber correlation length [10], [11],
is the beat length, and is the polarization mode

dispersion coefficient. We recall that the parameters, , and
where is the standard deviation of the

(a)

(b)

Fig. 1. Frequency dependence of the elements of theM-matrix for the CNLS;
(a) real and imaginary parts ofM11 and (b) real and imaginary parts ofM12.

change in that occurs at every intervals , are given by

(28)

In Fig. 1(a) and (b), we showM and M ,
the real and imaginary parts ofM , and M and
M , the real and imaginary parts ofM . The
smooth, slow oscillations might seem surprising at first, con-
sidering that the fluctuate wildly over the 600 short fiber
segments that makes up . However, we note that

when GHz, which is larger than the
frequency range of interest even though the PMD is large
compared to standard fiber parameters.

Dealing with the nonlinear terms in the time domain was
quite straightforward. The Manakov term is easily integrable,
and we used the expression

(29)

to calculate its effect. To calculate the effect of the nonlinear
PMD terms, we integrated over the rapidly varying coefficients
and then did a one-step Euler iteration of .

IV. A PPLICATIONS

Here, we will describe the application of the Manakov-PMD
equation to studies of both NRZ and soliton signal propagation.
We emphasize that since the Manakov-PMD is the basic
equation that describes pulse propagation in optical fibers,
taking into account the Kerr effect, chromatic dispersion, and
polarization mode dispersion, it is equally applicable to both
propagation formats. We will show that solving the Manakov-
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Fig. 2. Dispersion map showing the cumulative dispersion as a function of
the length coordinatez.

PMD equation using the numerical scheme described in the
last section leads to precisely the same result as is obtained by
solving the coupled nonlinear Schrödinger equation on a short
length scale, although it is computationally about three orders
of magnitude faster in the cases that we considered. Finally,
we will discuss the nonlinear PMD term, and we will show
that it is negligible in communication fibers using present-day
parameters.

A. NRZ Signals

In our studies of NRZ signals we selected the following
parameters in addition to those that we listed in the previous
section: the wavelength, m, the effective mode area,

m2, the Kerr coefficient, m W,
an FFT with grid points, and a total fiber length,

km.
A very important point is the choice of a dispersion map.

Since at zero dispersion the frequency spectrum of the signal
broadens uncontrollably [15], it is essential to have some
dispersion in the system. Using a fixed amount of dispersion
is undesirable since it causes linear pulse distortion which, on
the one hand, is of little theoretical interest and on the other is
undesirable in any realistic communication systems. For this
reason, we use here a dispersion map consisting of a periodic
sequence of normal, , and anomalous, , fiber
sections. The period length is 100 km, consisting of 80 km
sections with normal dispersion, ps/(nm km), and of
20 km compensation sections with ps/(nm km). Thus,
at the end of each period and of course also at the end of
the fiber, the cumulative linear dispersion is zero. The shape
of the cumulative dispersion map is shown in Fig. 2. In all
simulations reported here, the third-order frequency derivative
of (and of course all derivatives of higher orders) were
zero.

As the input pulse pattern we used a 16 bit pseudorandom
word in NRZ (nonreturn to zero) format with a 0.2 ns pulse
width corresponding to a signaling rate of 5 Gb/s. These
pulses are generated by passing rectangularly shaped pulses
through a low-pass Bessel filter of GHz width,
which gives the pulses slightly rounded edges. These optical
input pulses are shown in Fig. 3(a) in units of mW. The peak

(a)

(b)

Fig. 3. The train of pseudorandom input pulses consisting of 16 bits. (a)
Power of the optical pulses in mW and (b) detected and filtered current in
mW units.

pulse power is mW. This power is somewhat high
for communications purposes but was chosen here to produce
a sizable nonlinear effect in 500 km of fiber. Subsequently,
we present the shape of the received pulses as they appear
after square-law detection and filtering with a
GHz “electrical” Bessel filter. This process distorts the pulses
very slightly as can be seen in Fig. 3(b) which represents the
square-law-detected, filtered input pulse. The quantity plotted
in Fig. 3(b) corresponds to a current so that it can go negative,
but it is here labeled in units of mW for comparison with
the optical pulse, since detected current corresponds to optical
power.

All simulations reported here were run without fiber losses,
implying that there are also no optical amplifiers in the system
and, consequently, no amplifier (ASE) noise.

To compute the behavior of the system, two approaches
were used. The first solved the coupled nonlinear Schrödinger
equation on the short length scale, carrying out a full split-
step calculation after traversing each short interval. This
program is extremely slow and requires 1.5 days of running
time for the job at hand on a Sun SPARCstation 10. The second
program utilized the ideas explained in the preceding section
and solved the Manakov-PMD equation in two minutes, and
we ran it both with and without the nonlinear PMD correction.
The result of the simulation is shown in Fig. 4(a), which
represents the “electrical” output pulses. Both approaches
produced exactly the same output. Moreover, there is no
discernible difference whether the Manakov routine is run with
or without nonlinear PMD.

The shape of the pulses, shown in Fig. 4(a), is strongly
dependent on the random number sequence used for computing
the random variations of the fiber orientation angle,. The
overshoot seen at the trailing edges of the pulses in Fig. 4(a)
can be somewhat larger or smaller. They can even switch sides
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(a)

(b)

(c)

Fig. 4. Detected and filtered current of the output pulses forLcorr = 100 m
and�beat = 50 m. (a) This figure shows the solution of the CNLS equation
and the Manakov-PMD equation both with and without the nonlinear PMD
term. All figures look alike. (b) Same as (a) but for a linear fiber withn2 = 0.
(c) Same as (a) but with PMD= 0.

and appear at the leading edges of the pulses. These differences
correspond physically to the observation that different fibers
with different random variations of the birefringence will
have somewhat different behaviors. Nonetheless, our two
approaches produce exactly the same result for the same
assumed variation of the fiber birefringence.

To identify the source of the pulse distortion, we “turn
off” the nonlinearity by setting , obtaining Fig. 4(b).
Since in a linear system the compensated dispersion map
prevents dispersion from distorting the pulses, the remaining
slight pulse distortion seen in Fig. 4(b) is caused entirely by
linear PMD which is not affected by the dispersion map.
However, not all the distortion in Fig. 4(a) is due to the
interaction of PMD and the fiber nonlinearity, as can be seen
in Fig. 4(c), which was computed with the regular value of
but with . This figure shows that the nonlinearity
conspires with dispersion to distort the pulses even though
the overall cumulative linear dispersion of the system is zero.
The slight asymmetry of the pulses in Fig. 4(c) is attributable
to the “electrical” filter which shows this tendency already in
Fig. 3(b), but which is enhanced by the substantial broadening
of the spectrum at the end of the fiber. A comparison of
Fig. 4(a)–(c) makes it clear that the bulk of the pulse distortion

is caused by the interaction of the linear PMD with the
fiber nonlinearity. However, this interaction is almost entirely
due to the interaction of the linear PMD with the Manakov
nonlinearity, i.e., the Kerr nonlinearity averaged over the
Poincaré sphere, since inclusion of nonlinear PMD leads to
no “observable” effect.

B. Solitons

It is instructive to demonstrate by means of a numerical
example how fiber birefringence affects the soliton solutions
of the CNLS. Averaging over the fiber birefringence, which
is explicitly incorporated into the Manakov-PMD equation,
manifests itself by the appearance of the factor 8/9 on its left-
hand side. The Manakov-PMD equation is exactly equivalent
to the CNLS equation, but the averaged contribution of the
spatially varying birefringence, which appears on the left-hand
side of the equation, has been explicitly separated from the
fluctuating contributions, which are on the right-hand side. The
nonlinear contribution on the right-hand side may be neglected
in most cases of practical interest. However, it is apparent
that in the limit that the birefringence strength tends to zero,
the right-hand side of the Manakov-PMD equation cannot
be negligible and must contribute an amount appropriate to
change the 8/9-factor to unity. Thus, fiber birefringence has
a noticeable influence on soliton solutions of the Manakov
equation where the 8/9-factor appears explicitly in the formula
for the soliton pulse duration which, in soliton units, assumes
the form

(30)

To demonstrate the influence of fiber birefringence, the solid
curve in Fig. 5(a) shows the soliton solution of the Manakov
equation, computed without the negligible correction terms,
while the dotted curve represents the soliton solution of
the CNLS equation for a fiber without birefringence. We
have confirmed by numerical solutions of the differential
equations that both pulses maintain their shape as they travel
along the fiber. Fig. 5(b) shows the soliton solution of the
CNLS for a fiber with birefringence. Superimposed on this
curve is the Manakov solution of Fig. 5(a). Both curves are
almost indistinguishable. However, the height of the CNLS
soliton fluctuates along the fiber due to the randomness of the
birefringence. The maximum and minimum excursions of the
calculated pulse heights differ by approximately 1% of the
average pulse height, but Fig. 5(b) demonstrates clearly that
the fiber birefringence does indeed modify the shape of the
soliton pulse by the amount predicted by the 8/9-factor in the
Manakov equation.

C. Nonlinear PMD

Mathematically, the terms that we refer to as nonlinear
PMD corresponds to the difference between the Kerr effect
terms and their average over the Poincaré sphere. Physically
these terms correspond to the rapidly varying fluctuations
in the strength of the Kerr effect as the polarization state
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(a)

(b)

Fig. 5. (a) The solid curve is the solution of the Manakov equation, i.e.,
the Manakov-PMD equation without the PMD terms on its right-hand side,
while the dotted curve is the soliton solution of the CNLS equation for a
fiber without birefringence. (b) Soliton solution of the CNLS equation for a
fiber with birefringence. Superimposed on this curve is the Manakov solution
of (a). The height of the CNLS soliton fluctuates by about 1% due to the
randomness of the fiber birefringence.

changes. The size of these fluctuations does not depend on
the birefringence strength; they are about the same size as the
Kerr effect itself. However, their duration depends on the rate
at which the polarization state visits the different points on the
Poincaŕe sphere. If this rate is rapid—as is the case in standard
communication fibers with standard signal parameters—then
the fluctuations rapidly change sign and their net effect on the
signal evolution is nearly zero.

A significant contribution from nonlinear PMD can only
occur when mixing on the Poincar´e sphere is poor, i.e., this
mixing occurs on the same length scale or even a longer
length scale than is associated with the Kerr effect, chromatic
dispersion, and polarization mode dispersion. From the studies
in [10] and [11], one concludes that there are two limits in
which this situation can occur. The first and most obvious is
when , the fiber correlation length, becomes comparable
to the nonlinear and dispersive scale lengths. Since the mixing
length on the Poincar´e sphere must be longer than ,
it is apparent that mixing will be poor. This limit, which
applies to subpicosecond pulses, does not occur in present-day
communication systems. In this limit, there is no advantage
to solving the Manakov-PMD equation rather than directly
solving the coupled nonlinear Schrödinger equation since there
is no short length scale any more.

The second limit is a little less obvious. When
, the mixing length becomes proportional to ,

and when the mixing length approaches the nonlinear and
dispersive scale lengths, mixing will be poor [10], [11]. In
this limit, which corresponds to decreasing the magnitude of
the birefringence, the birefringence becomes sufficiently small
that the polarization state is nearly unaffected by the randomly

varying birefringence and, in a fixed frame, the electric field
remains correlated over long lengths. This increased mixing
length only affects the nonlinear PMD; the strength of the
linear PMD is proportional to . It has been proposed to
significantly decrease the linear PMD by rapidly shifting the
orientation of the birefringence axes in a fiber as it is drawn,
which amounts to reducing while keeping fixed
[11]. This approach raises the specter that nonlinear PMD
might become important in these fibers, but that is not the
case. An analytical calculation of the mixing length in this
limit shows that it equals [11], and the
factor of is so small that it is difficult to achieve a
significant mixing length even under extreme circumstances.

To illustrate this point, we carried out simulations with
the same parameter set as in Section IV-A, except that we
changed from 100 to 10 m and from 50 m to
10 km. Obviously, a beat length of 10 km is far larger than
can be presently achieved in practice. Nonetheless, the mixing
length is only 100 km in this case, which while approaching
the nonlinear and dispersive scale lengths is not larger than
them. Even under these fairly extreme conditions, we found
no significant effect from the nonlinear PMD terms. To observe
the effect of the nonlinear PMD terms, we had to further lower

from 10 m to 1 m. In this case, the mixing length equals
1000 km which is larger than the nonlinear and dispersive
scale lengths. (Note that in this case, we set
instead of .)

The pulse shape computed for these conditions with the
CNLS as well as with the Manakov-PMD equation, including
the nonlinear correction term, is shown in Fig. 6(a). The
figures computed with the two programs are indistinguishable.
Fig. 6(b) shows what happens when we neglect the nonlinear
PMD. The pulse shape in Fig. 6(b) is distinctly different
from that of Fig. 6(a). This example clearly shows that the
nonlinear correction term in (12) does make a contribution
if the inequality is sufficiently well satisfied.
However, this example represents a highly extreme case that is
unlikely to be found in practice so that the nonlinear correction
term can safely be neglected for all communications fibers in
use today.

V. COMPARISON WITH THE COARSE-STEP METHOD

From a practical standpoint, it is not feasible to integrate
the coupled nonlinear Schr¨odinger equation on the small
length scale that is required to mimic the rapidly changing
birefringence orientation. In the absence of the approach based
on the Manakov-PMD equation that we have described here,
an ad hoc approach that was first introduced in [8] and [9]
has become widely used. We refer to it here as the coarse-step
method, and we will analyze it using the theoretical tools that
were developed in Section II. We will show that the coarse-
step method as it is presently used deals with the nonlinear
PMD inaccurately but that this inaccuracy does not matter
when the contribution of the nonlinear PMD is negligible as
is the case in present-day communication systems. We will
show that it deals with the linear PMD accurately but to do so
the magnitude of the birefringence must be artificially lowered.
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(a)

(b)

Fig. 6. Detected and filtered current of the output pulses forLcorr = 10

m and�beat = 10000 m. (a) This figure shows the solution of the CNLS
equation and the Manakov-PMD equation with nonlinear PMD. (b) This figure
shows the solution of the Manakov-PMD equation without nonlinear PMD.

We will also show how the method can in principle be modified
to deal accurately with nonlinear PMD. Thus our results serve
to validate the use of the coarse-step method in simulations of
current communications systems.

Our starting point is the coupled nonlinear Schrödinger
equation transformed into the frame of the local axes of
birefringence. Substituting , given by (5) into (1), we obtain

(31)

which may also be written

(32)

where . In the case where the birefrin-
gence axes are fixed, i.e., in equals 0, it was long ago
observed [3], [4] that the term is rapidly varying and could
be dropped from (31) with no loss of accuracy in the parameter
regime that is used in communication fibers. Equation (31)
then reduces to

(33)

where we have transformed from to
and then removed the primes. In the coarse-step method used
in [8] and [9], one simply solves (33) on a length scale that is
somewhat longer than the fiber correlation length—100 m was
used in [8] and 1 km in [9]—but that is still short compared to
the nonlinear and dispersive scale lengths.1 Since the random
variations of the birefringence are no longer present in (33),
the scattering of the field on the Poincaré sphere that they
induce must be put back. In both [8] and [9], the authors do
that by scattering the field on the Poincaré sphere at the end
of each step, setting S . In [8], the authors used the
scattering matrix

S (34)

while in [9], the authors used

S (35)

where and are randomly chosen from uniform
distributions in the first case andand are randomly chosen
from uniform distributions in the second case. In neither case
does this matrix introduce a uniform scattering on the Poincar´e
sphere. To achieve that, one must use, for example, the three
Euler angles [16]. However, concatenating several of these
matrices together does lead to rapid uniform mixing on the
Poincaŕe sphere, as we will show. This point is significant
because the Manakov-PMD equation is obtained by removing
the rapid motion that a linear CW signal undergoes on the
Poincaŕe sphere. In this case, a linear, CW signal is unaffected
by (33) and the transfer matrixT just consists of a series of
S-matrices multiplied together.

To demonstrate the uniform mixing on the Poincaré sphere
and to determine the mixing rate, we define the three Stokes
parameters , and
which characterize the coordinates on the Poincaré sphere. For
comparison, we note that , , and correspond respectively
to , , and in [11]. (The minus sign appears in the
representation used in [11] for is to be consistent with the
definition used in [7] of the Stokes parameters. Here we return
to the definition used in [9] and [13].) For the scattering matrix
given in (34), one finds that the Stokes parameters of a linear,
CW signal evolve according to the formula shown in (36) at
the bottom of the next page and for (35), this result becomes

(37)

where the subscript indicates the step number. Noting that
the and are chosen randomly in each step for the

1In the description of the numerical algorithm in both [8] and [9], it was
not explicitly stated thatN is dropped. We are grateful to Dr. Evangelides
for describing to us the numerical algorithm that was used in [9].
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first case, one finds from (36) that

(38)

where the angular brackets indicate an average over all possi-
ble values of and . We finally conclude

(39)

where if and 0 otherwise, and the values
of and depends on the initial conditions. For example, if

, , and , we find and .
The convergence to a uniform distribution function is very
rapid. Indeed, if we define the diffusion length as the length
over which the initial conditions fall to within of their
uniform value of , then we find that this occurs
within two steps, regardless of the initial conditions. A similar
analysis for (37) yields

(40)

The convergence in this case is even more rapid than in the
previous case.

We now determine the polarization mode dispersion in
the coarse-step method. Focusing on the linear part of (33),
ignoring chromatic dispersion, and the Kerr effect, we find

S S

S S S S S S

S S (41)

where is the Fourier transform of , theS are
the scattering matrices given by (34) or (35), and

S

(42)
Taking the derivative of (41) with respect to and writing

F we find

F V V (43)

where V S S S S S S S
S S S . Physically, the matrixV corresponds to the
backward transformation from to . By
analogy with (16), we write

V V (44)

where letting
, and at .

Noting that F [13], we substitute (44)
into (43) and use the results, which may be derived directly
from (36) and (37), that the are uncorrelated from step to
step to conclude

(45)

By contrast, one finds in the large-limit from [11, eq. (22)]

(46)

Thus, the polarization mode dispersion will be too large by a
factor of .

However, if one lowers and hence the birefringence,
by a factor of , then the polarization mode
dispersion returns to its original value in a statistical sense.
If, for example, m and km, one must lower
the birefringence by a factor of four. The birefringence is often
not even known within a factor of this magnitude!

We now consider the nonlinear terms. The first point to note
is that , given in (31), does not contribute to the average over
the Poincaŕe sphere which is regardless of
whether the term is kept or dropped. By contrast, the effect
on the nonlinear PMD is profound. We previously found that
the nonlinear contribution involves the, as can be seen by
reference to (12)–(18). In this case, we find that the nonlinear
contribution to is given by

(47)

where , given by (16) involves the , rather than the .
We can write out an expression that is analogous to (17) but
there is little point. The basic result is that the nonlinear PMD
is inaccurately described by the coarse-step method. It was
already noted in [11] that the coarse-step method tends to
exaggerate the strength of the PMD coefficients by a factor
of about where is the appropriate mixing
length. Even more serious, however, is that the coefficients
for nonlinear PMD are incorrect in the coarse-step method.
In particular, because for the regardless of

, while for the when
, the coarse-step method will not show the expected

rise in nonlinear PMD in this limit. However, the poor
treatment of nonlinear PMD in the coarse-step method has
little practical significance for simulations of communications
fibers to date in which both the actual nonlinear PMD and the
nonlinear PMD generated by the coarse-step method are both
negligible.

Our results suggest a modest improvement in the coarse-step
method. One could use an Euler angle transformation at the

(36)
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end of each step which would guarantee complete mixing on
the Poincaŕe sphere. Should it ever be of practical importance,
our results also suggest an approach that will yield correct
results in a statistical sense for the nonlinear PMD. Keeping all
the nonlinear PMD terms, i.e., not dropping, one multiplies
the nonlinear PMD terms by a factor , where

is given in [11]. Just as lowering the coefficient of the
linear PMD restores the correct statistical behavior of the linear
term, lowering the coefficient of the nonlinear PMD terms
restores the correct statistical behavior of the nonlinear terms.
Of course, one must leave the coefficient of the Manakov terms

unchanged.
In summary, our results validate the use of the coarse-step

method as it is currently practised. Moreover, we have carried
out simulations of the cases presented in Section IV-A using
it, and we have verified that it appears in a statistical sense
to yield similar results. Here, one of the principal practical
difficulties with the coarse-step method asserts itself. We were
able to compare the Manakov-PMD equation solution directly
to solutions of the coupled nonlinear Schrödinger equation
solved on a short length scale, which is not possible to do
with the coarse-step method. We note that in our simulations
the coarse-step method is somewhat faster than our simulations
based on the Manakov-PMD method, but the two approaches
have comparable speeds.

VI. CONCLUSION

In this paper, we reported our investigations of the
Manakov-PMD equation which can be derived from the
coupled nonlinear Schrödinger equation and is fully equivalent
to it. Its use is appropriate when modeling optical fibers whose
birefringence orientation changes rapidly by comparison
with the typical length scales for chromatic dispersion,
polarization mode dispersion, and nonlinearity. We first
derived the Manakov-PMD equation from the coupled
nonlinear Schr¨odinger equation, and we found that it consists
of a set of terms that correspond physically to linear PMD,
chromatic dispersion, the Kerr nonlinearity, and nonlinear
PMD. We interpreted nonlinear PMD as the residue of
incomplete mixing of the Kerr nonlinearity over the Poincar´e
sphere. We next developed a numerical algorithm for solving
the Manakov-PMD equation and applied it to both NRZ
and soliton signals. We also examined the nonlinear PMD
terms and showed that they are negligible even under fairly
extreme circumstances. Thus these terms can be safely
dropped in almost all cases, simplifying the numerical
algorithm. We next carried out an analysis of the widely
used coarse-step method, and we showed that it will yield
reasonable results in the parameter regime that is currently
used in communication systems. At the same time, we
note that the additional computation load required to solve
the Manakov-PMD equation is slight, and it allows us
to both accurately model particular representations of the
birefringence variation along the fiber and to determine the
importance of the different physical effects that contribute
to the Manakov-PMD equation in a physically transparent
way.
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