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Abstract— We report here on our investigations of the varying envelope approximation applies, which is the case in
Manakov-polarization mode dispersion (PMD) equation which communication signals to date [2], and fiber birefringence

can be used to model both nonreturn-to-zero (NRZ) and soliton o, e gnored, then the transmission is well-described by
signal propagation in optical fibers with randomly varying

birefringence. We review the derivation of the Manakov-PMD the nonlinear Sclidinger equation. Unfortunately, it is of-
equation from the coupled nonlinear Schdinger equation, and ten impossible to ignore the fiber birefringence, particularly
we discuss the physical meaning of its terms. We discuss ourin modern-day NRZ (nonreturn-to-zero) communications, in
numerical approach for solving this equation, and we apply this \yhich polarization scrambling is consistently used. Menyuk
approach to both NRZ and soliton propagation. We show by . .
comparison with the coupled nonlinear Schodinger equation, 3] sh_owed th_at the _CNL_S (couplgd n(?nlmear Sutinger
integrated with steps that are short enough to follow the detailed €quation) applies to birefringent optical fibers, but early work
polarization evolution, that our approach is orders of magnitude focused on fibers with constant birefringence [4]. In the pa-

faster with no loss of accuracy. Finally, we compare our approach rameter regime in which present-day communication systems
E:c());I’rlsee\f\g?eegyr#gﬁ%(;:ci):rgggﬁttz?ﬂQ;t\?%dn:r:/iltijde.monstrate that the operate, the bire_zfringence is large in_the sense that_ the beat
lengths are typically 10-100 m, while the dispersive and
nonlinear scale lengths are hundreds of kilometers—but is
rapidly varying in the sense that the length scale on which
the birefringence orientation varies is 0.3 to 300 m. When
|. INTRODUCTION nonlinearity can be ignored, Poole and Wagner [5]—[7] showed

ECAUSE of their low loss, optical fibers have becomthat the large but rapidly and randomly varying birefringence
Ban important medium for long-distance communicationtéads to PMD (polarization mode dispersion), which is a
Even though the glass fiber is a remarkably linear transmissiéfy important effect in communication fibers. An important
medium, its slight nonlinearity, due primarily to the Ker@dvance in dealing with both nonlinearity and the rapidly
effect, became important with the advent of the erbiuny.a.rying birefringence was made when it was reCOgnized that if
doped optical amplifier that permitted transmission of lighthe polarization states of the light is averaged over the Pancar
signals through optical fibers over transoceanic distances wigthere, the Manakov equation can be derived from the CNLS
out regeneration, allowing the effect of the nonlinearity t68], [9]. However, the assumption that the polarization states
accumulate over the entire distance. are mixed on the Poincarsphere was not justified, and the

When light travels in an optical fiber for thousands ofature of the correction terms was not completely elucidated,
kilometers, the effect of the nonlinearity can no longer balthough it was recognized that they are important [8]; it
ignored. On the one hand, it can lead to significant sigp these terms that are responsible for PMD. Since then,
nal distortion—particularly when coupled with the spontan a series of works that carefully investigated the statistics
neous emission noise due to the erbium-doped fiber amplifiers the Poinca sphere using physically reasonable models
(EDFA’s); on the other hand, it can be used to counteradO], [11], we were able to justify the assumption in [8]
dispersion, as in solitons. The development of communicatioasd [9] and to elucidate the nature of the corrections to the
technology has made it necessary to develop mathematibtnakov equation. This work culminated in the derivation of
tools for describing light transmission in nonlinear opticahe Manakov-PMD equation [11] which it is the object of this
fibers. Hasegawa and Tappert [1] showed that when the slovglgper to study.

It is our view that the derivation of the Manakov-PMD

Manuscript received November 8, 1996. This work was supported by ARRéguation completely resolves the outstanding theoretical issues
through the AFOSR, NSF, and DOE. &oncerning appropriate models for modeling birefringence in

D. Marcuse and C. R. Menyuk are with the Department of Computer S . . ; . ) .
ence and Electrical Engineering, University of Maryland, Baltimore Count@ptical fibers. Moreover, this equation leads to highly rapid

Index Terms—Birefringence, optical fibers, polarizations, ran-
dom bifringence, solitons.

Baltimore, MD 21228 USA. _ o numerical schemes and can be used to justify the widely
P. K. A. Wai is with the Department of Electronic Engineering, The Hon% d hod. E hvsical dooi h
Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. se Coarse'Step metho . rom a physical stan pplnt, the
Publisher Item Identifier S 0733-8724(97)06657-7. mathematical transformation that allows us to derive the

0733-8724/97$10.000 1997 IEEE



1736 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 1997

Manakov-PMD equation from the CNLS equation amounts gngle guided mode which, however, can exist in two mutually
freezing the linear motion of the signal’'s central frequency arrthogonal polarization [12]. In a perfectly isotropic, circularly
the Poincag sphere. Since the motion of the other frequencisgmmetric fiber the two polarization components of the
in the signal and the changes due to nonlinearity are slomode would travel with identical phase and group velocities.
relative to this point’'s motion on the sphere, we can take lognavoidable fiber imperfections break this polarization
computational steps. The terms that appear in the Manakakegeneracy so that at each point along the fiber there exists
PMD equation have a transparent physical meaning. There ar@referred direction perpendicular to its axis. A light field
two terms that account for the Kerr nonlinearity averaged ovpolarized orthogonal to this direction has the smallest phase
the Poincag” sphere and chromatic dispersion; these are thed group velocity. We designate the propagation constant of
terms that appear in the Manakov equation. There is anothiee wave polarized in the preferred direction /asand the
term that corresponds to the usual linear PMD and when bgitopagation constant of the orthogonally polarized wavg,as
chromatic dispersion and nonlinearity can be neglected, tAike difference of these two propagation constants is defined
term yields all the effects that Poole and others have describad.the birefringence parameter (5, — 32)/2. The specific
Finally, there are additional nonlinear terms that have ngtoup delay per unit length is representedbby= (/31 — /35)/2
been previously discussed in detail (but see [11]) and thahere the primes indicate differentiation with respect to the
we refer to as nonlinear PMD terms. We will show that thesengular frequency. In this paper, in contrast to our earlier
terms, which are due physically to incomplete mixing on theaper [11], we do not use normalized units so thaand b
Poincaé sphere, are vanishingly small in cases of preseffiave the dimension of the inverse length, whileandd’ have
day, practical importance in optical communications and calimensions of time divided by length. In this paper, we also
safely be ignored in these cases. usea to designate the preferred direction, rather than 2«

At the present time, most simulations of polarization effectss in [11] sincex is the geometric rotation angle. The angle
in long-distance optical fiber transmission are done usingoarotates randomly) andd’ may also vary randomly.
somewhatd hocprocedure that is discussed in [8] and [9] and Optical signals in fibers can be distorted due to a combi-
that we refer to here as the coarse-step method. The startiragion of several effects. First, f £ 0, the signals undergo
point for this approach is the CNLS without the rapidly varyingMD [5]-[7]. Second, if3; ~ 3§ # 0, the signals undergo
terms that is described in [3] and [4]. One then integratebromatic dispersion. Finally, optical fibers are weakly nonlin-
these equations using step sizes that are large compare@aowhich means that the refractive index of the fiber material
the fiber correlation length—typically several kilometers—anchanges as a function of the light intensity. The propagation
then randomly rotates the data on the Poiacsphere. This of light pulses, taking all these effects into account, can be
approach leads to an artificially increased fiber correlatiatescribed by the coupled nonlinear Safinger equation [3],
length, but one also artificially reduces the strength of thé]

birefringgnce. By doing so, one can _obta_lin the_same m_agnitude OA LLOA 1 %A

for the linear PMD as one would in simulations which use 5~ +bXA + i’ X—- — 5/3 2

realistic fiber correlation lengths and birefringence strengths, 5 1 1

and one realizes an enormous saving in computation time. We =+ n2ko {6|A|2A + E(ATU?:A)U?:A + gB} =0 (1)

shall show in this paper that this approach, as it has been )

used to date, both exaggerates the nonlinear PMD and dé§i€quivalently
with it inaccurately, but we will also show that the nonlinear LOA BYA f‘b’EaA 1 ,0%°A
PMD is so small in cases of present-day practical importance v, T R T Q/ o2
in long-distance communication systems that this exaggeration 9 I

does not matter. Moreover, we will show how to eliminate this +nzko | |A[FA — §(A g2A)o2A| =0 (2)

difficulty. Thus, our work provides a theoretical justification , . . . : . i
which are written in a form that is appropriate for a fiber
for the use of the coarse-step method.

: . : . with a randomly varying birefringence orientation. Hefe =
The reminder of this paper is organized as follows: | A4, 4,)* is & column vector with elementd; and 4, which
Section I, we review the derivation of the Manakov-PMD" 122 ' 2

. . . ) ) are the complex envelopes of the two polarization components.
equation, and in Section Ill, we discuss the numerical alg

. o . . 19%he vectorB is defined agAr A2, A2A%)t, wherex designates
rithms for solving it. In Section IV, we apply this equation . . : .

. e . complex conjugation. Thez-coordinate measures distance
to examples of NRZ and soliton communication signals, an

! . . he fi i hil i
we discuss the nonlinear PMD. In Section V, we compare tﬁ ong the fiber axis, while thecoordinate represents retarded

e . . ) .
Manakov-PMD equation to the coarse-step method. Section We—the time relative to the moving center of the signal.

X . € matrix
contains the conclusions.
Y = o3 cos(2a) + o1 sin(2a) (3)

Il. DERIVATION OF THE MANAKOV-PMD EQUATION is defined in terms of the Pauli's matrices

In this section, we will review the derivation of the | <1 0) oy = <0 1)
Manakov-PMD equation that was earlier discussed in [11], 0 1) Lo @)
presenting it from a more physical perspective. Optical fibers 0 —i 1 0
used in telecommunications are designed to support only a o2 <L 0)’ 93 = <0 —1)
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and by using the same matrix in the second and third Second, we introduce a new field vect(z, t) via the unitary

terms of (1), we are effectively assuming that the orientationatrix T

of the axes of birefringence is only a weak function of _

frequency. The nonlinear Kerr coefficient is represented.by U(z,t) = T(2)¥(z,t) ©)

and the wavenumber by, = 27 /A, where A is the vacuum . ) i ) . i

wavelength of light. The parametgf in (1) and (2) does not whereT is the solution to the ordinary differential equation

have a subscript since we are assuming fHats 5] = 3". T
A fundamental difficulty in solving (1) or equivalently (2) t

is that « changes on a length scale of 0.3—100 m, while the

length scales for PMD, chromatic dispersion, and the Keith the initial condition

nonlinearity are hundreds or even thousands of kilometers. If <1 0)

+3T=0 (10)

z

one wishes to solve (1) accurately, taking into account rapid T(z=0)= 0 1 (11)

and random variations of the birefringence, one must do so

on a very short length which is computationally expensivgyne then finds that (1) yield8®(z,t)/0t = 0 in the linear,
Moreover, the different physical effects that contribute to theyy limit, so that® is frozen on the Poincarsphere in this
signal evolution in (1) are mixed together in a complicateghit |n effect, the transformatior follows the rapid and
way. It is known that when the nonlinearity and chromatic di$zndom motion of a single state on the Poirgcaphere. This
persion can be ignored, the signal undergoes polarization mQfstion occurs on a length scale of 0.3-100 m. Of course,
dispersion [5]-[7]. Conversely, when the PMD is small but thq,(z7t) is not frozen on the Poincarsphere at alt-points
birefringence is rapidly and randomly varying, it is known thakycept in the special case of a linear CW field. However, in
the Manakov equation applies. It is not immediately appareg cases of present-day interest in communication systems,
where in (1) these effects are embedded. __its evolution is quite slowly varying—on a length scale of
The Manakov-PMD equation resolves both these difficulngreds of kilometers, associated with the scale lengths of

ties. It not only allows us to develop a rapid numericab\ip chromatic dispersion, and nonlinearity. This physical
scheme for determining the signal evolution with no 10S§pservation is at the heart of our approach.

of accuracy, but the differe_nt physical effects are isolated i_n After substitution of this transformation into (1), we obtain
separate terms of the equation that have a transparent phy%‘r?@'Manakov-PMD equation [11]

meaning. Thus, this equation is the natural starting point for

analysis of signal propagation in optical fibers. In particular, 0¥ LT 8 s
we will use it to validate the widely used coarse-step method 5, T3P g T gnokal¥TE
in the parameter regime that is relevant to long-distance oF 1 A
communication systems. = —ib’a—a—t - gnokQ(N — (N)). (12)

To obtain the Manakov-PMD, we proceed in two successive
steps [11]. First, the fieldA is transformed from the fixed When the right-hand side is zero, (12) reduces to the Manakov
coordinate system to a coordinate system that rotates with #wuation. The second term on the left-hand side of (12)
principal axes of the fiber. The new field is designated by thecludes the effect of chromatic dispersion, and the third

vector ¥ that is related toA as follows: term on the left-hand side of (12) includes the effect of Kerr
U nonlinearity averaged over the Poineaphere with the well-
¥ = <V) =R'A known 8/9 factor [8], [9]. We will show that the first term on

. the right-hand side of (12) leads to the usual linear PMD that is
— < cos o Smo‘) <A1 ) (5) discussed in [5]-[7]. Finally, the second term on the right-hand
—sina cosa J\ Ay side of (12) is a new term that we refer to as nonlinear PMD.

If we consider a continuous wave (CW) signal at a Sir]g|lghy5|cally, it is due to incomplete mixing on the Poirear

frequency and neglect the fiber nonlinearity, then (1) reduc%%hcifs'ezoe?:é;E?g\:‘i’gsg:e’;?';‘:fgg 2?[312]&”??&2 E;ep:/elcr)uvsvlg

to
will show that its effect is negligible in the parameter regime
OA in which communication fibers normally operate.
i, TH=A=0 (6)  There are three quantities;, N, and (N), that require

special discussion. The matrik defined in (9) and (10) is

and the transformation (5) implies [13] a special unitary matrix so that it has the form

N _fur —ul
i— + 3% =0 (7) U@z(w ;) (13)
z 1
where, lettinga, = da/dz, we find with the additional constrairjt:; | + |u2|? = 1. We note that
. our notation differs from that of [11] in which the vector
= <.b —WZ) @) Tcw = (u1,u2)" now corresponds to the continuous wave
ia; b signal of (7). The other solution of (7) is given Bycw =
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(—u}, ut)'. We define the Stokes parameters of the CW wave [1l. NUMERICAL APPROACH

as The numerical approach that we follow in solving the

Manakov-PMD equation is closely related to the widely

= ol = |ug |2 = 1o |? . . .
21 = PowosPow = |u|” — [ue] used split-step operator technique that is used to solved the

y1 = Lo Tow = (uyuh + uius) nonlinear Schidinger equation and the coupled nonlinear
2= ‘I’TCWUQ‘I’CW = i(ugul — uluy). (14) Schibdinger equation and is discussed, for example, in [2]
and [4]. In this approach, time derivatives are evaluated
Using the solutionsP oy and @cw, we also define in the frequency domain while functional multiplications
are evaluated in the time domain. For the usual nonlinear
To +ix3 = ‘I)TCWO';),‘I’CVV = —2ujug, Schibdinger equation and the coupled nonlinear 8dhrger

Yo+ iys = Blayor Wow = ud — u, equation, which do not take into account such complications as
R g 5 the Raman effect, this prescription implies that the linear terms
7 +izg = BiwoaWow = i(ul +u3). (15)  are evaluated in the frequency domain while the nonlinear
terms are evaluated in the time domain. By splitting the spatial
step, so that the time domain evaluations are done in the middle
of the frequency domain evaluations, it is possible to maintain
second-order accuracy with one function evaluation per step
for each term at every node point. We also note, because it is
important in practice, that certain linear effects like chromatic
dispersion do not change the spectral intensity and certain

to each other. We have changed notation from that of [11] p@nlinear effects like the Kerr nonlinearity do not change the

emphasize the geometric connection to vectors on the Péinc poral intensity. In order to avoid numerical instabilities, it
sphere. We now find that is important that the numerical approximations of these effects

retain these properties to far higher than second order, even
5Tt < 1 Ty — ia;g) (16) though the overall scheme is only second-order accurate.
g = g3 = .

Defining the real vector®; = (z;,¥;,,%;) and recalling that
atz =0, u; = uj =1anduy = ub =0, it can be shown that
the R; are vectors on the Poin@sphere [11] and th&, is
initially pointed in thez-direction, R, is initially pointed in
the y-direction, andR; is initially pointed in thez-direction.
As T evolves in accordance with (10), tiR; will wander on
the surface of the Poindaisphere but will remain orthogonal

Ty +ix3 -] The vectorsA and ¥ are related to each other by a simple
R A unitary transformation which can be found by integrating
We also find thafN = (N, N5)! where (10) and is rapidly determined, since it is only a second-
R order ordinary differential equation, even though it must
Ny = 272[V]2 = |UP)U - 21(22 —iz3)(2|U)* = [VI*)V  be integrated on the short length scale given by the beat
— 212 +123)U2V* = (29 — iZg)QVQU* length and fiber correlation length. In most practical cases,
R TN I BTN p 122N it is not even necessary to transform from one to the other.
N2 = # (2] _ |V|_)2V_+ 2122 +‘L23)2(%|2V_| - whu Since the electrical output current from a realistic detection
+ 222 = 1z3)VIUT = (22 +iza) UTV? (A7) system is given byA|? = |¥|?, it does not matter which
we use. We stress this point because in devising numerical
algorithms for solving (12) efficiently, we have found it
somewhat advantageous to work with (1) rather than (12).
The linear part of (1) may be written in the form

and
~ 1 L
(N1) = 5(2|V|2 - 0T

~ 1 o
(No) = S (2U)? = [V])V. (18)

3 iaaA +5(2)A +ib’2(z)% _ %/3
The Manakov-PMD equation is useful from a conceptual z
standpoint because each of the principal effects that contribyigich in the Fourier domain becomes
to the signal evolution, the Kerr effect, chromatic dispersion,
and polarization mode dispersion are clearly separated. The L% FIN(2)A + VS(2)wA + lﬁusz -0 (20)
Manakov-PMD equation is useful from a numerical standpoint 0z 2
becausel(z,t) is slowly varying. Ther; andz; that appear
in this equation are rapidly varying, but they are determin
by solving (10) which is merely a second-order ordinary A
differential equation and can be rapidly solved. When solving
Eq. (12) on the sloyvly varying scale,. one must pr0perl\X/here the transfer matrikl [14] satisfies the ordinary differ-
average over the rapidly varying terms, i.e., one must replace.. .

Z+1 . . ential equation

thex; by (1/1) {77 dz'z;(%'), and we will discuss this issue
in the next section. In principle, it is possible to take advantage 8 )
of the central limit theorem to replace these averages with iy, T HVW)E(M =0 (22)
appropriate random variables [11]. This issue is currently being
studied. with the initial conditionM(z = 0,w) = |, wherel is the

9?A
//W - 0 (19)

él'(rle solution to (20) may be written

(z 4 Az,w) = exp[(i/2)w? B AzM(w)A(z,w)  (21)
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2 x 2 identity matrix. To calculateM(w), we subdivided w 11—
each intervalAz into smaller subinterval$z, and in each T (M. )
subinterval we set g "
(]
b or v .
m m ~
mj(w):< - 12) (23) X o M), ~
Ma1 a2 =
© /s
where = L=

mi1 = mie = cos[(b+ b'w)éz]
+ 4 cos(2a;) sin[(b + V' w)éz] (24)
miz = mao1 = tsin(2cy;) sin(b + b'w)éz] (25)

and theq; are constant in each subinterval. The total transfer
matrix is now expressed at

Matrix Elements
(o]

1 1 1 L i i

N -1 L
-150 0
M(w) = [T mj(w). (26) Frequency (GHz)
i
(b)

The transfer matrix includes the rapid motion over th&g. 1. Frequency dependence of the elements ofitimeatrix for the CNLS;
Poincag sphere that occurs at the central frequency, but tfféea and imaginary parts 8., and (b) real and imaginary parts .
variation as a function of frequency will be quite small as long
as the intervalAz is small compared to the PMD length scalechange in that occurs at every intervals;, are given by
One way to reach this conclusion is to note, using (5), (9),

and (21), that po " o Dryp
Aveat” (2L ) /2

Uz + Az,w) 5z \“?
_ _ A2 = [ =) . 28
=T l(Z + AZ)R 1(2 + AZ) <( a) > <2Lc0rr> ( )

X {M(w) exp[(i/2)w? 8" AIR()T() ¥ (zw). (27) Fig. 1(a) and (b), we showMy;(w)]. and [My;(w)]:,
the real and imaginary parts ®f;;(w), and [M;2(w)],- and
[M12(w)];, the real and imaginary parts d¥l;2(w). The

. : smooth, slow oscillations might seem surprising at first, con-
as a function ofw. Of course, we could directly calculateg;ye ing that ther, fluctuate wildly over the 600 short fiber
M(w) = T""R™"MRT, but this calculation is, in fact, slightly segments that makes upz. However, we note thatwAz ~
more elaborate becausedepends onrr. which hasé-function or when f = w/2r = 320 GHz, which is larger than the

jumps. _ _ frequency range of interest even though the PMD is large
The transfer matrixM(w) can be used to determine thecompared to standard fiber parameters.
evolution of A(z,w) according to (21), or equivalently, we  pegjing with the nonlinear terms in the time domain was

can useM(w) to determine¥(z,w). If 6z ~ Az/500, as quite straightforward. The Manakov term is easily integrable,
was typically the case in the examples that we chose, aggy we used the expression

we calculatedM(w) at each of the frequencies that we used
in the fast Fourier transform, then our procedure would still F (2 + Az, t) = exp| ingk §|‘ij|2 F(z, 1) (29)
be slow, although faster than direct integration of (1) using ) b = GXp thafog ~

the split step method by more than an order of magnitude. lculate its eff - cul he ff f th i
However, the variation oM(w) as a function of frequency to calculate its efiect. To calculate the eflect of the nonlinear

is very slow on the length scale given bz, and it is only PMD terms, we integrated over the rapidly varying coefficients

necessary to evaluald(w) at a few frequencies (typically 16) and then did a one-step Euler iteration®{z, ¢).
and to interpolate between them with a second-order Lagrange
interpolation polynomial. IV. APPLICATIONS

To demonstrate the slow variation ®(w) with w, we Here, we will describe the application of the Manakov-PMD
consider an example in whichz = 1 km, L., = 100 m, equation to studies of both NRZ and soliton signal propagation.
Apear = 50 M, Dpyp = 3 ps/(km)/2, andéz = Ayeat/30 = We emphasize that since the Manakov-PMD is the basic
1.67 m, whereL,, is the fiber correlation length [10], [11], equation that describes pulse propagation in optical fibers,
Abeat IS the beat length, an®pyip is the polarization mode taking into account the Kerr effect, chromatic dispersion, and
dispersion coefficient. We recall that the paramete#s, and polarization mode dispersion, it is equally applicable to both
((Aa)?)1/2 where((A)?)1/? is the standard deviation of thepropagation formats. We will show that solving the Manakov-

Since T and R are independent ofs, and the change in
¥ is small over the intervalAz, M(w) must vary slowly
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PMD equation using the numerical scheme described in the 0 0 1 > 3
last section leads to precisely the same result as is obtained by t (nsec)

solving the coupled nonlinear Séitinger equation on a short

length scale, although it is computationally about three orders

of magnitude faster in the cases that we considered Fina@g' 3. The train of pseudorandom input pulses consisting of 16 bits. (a)
. . . . Wwer of the optical pulses in mW and (b) detected and filtered current in

we will discuss the nonlinear PMD term, and we will showhw units.

that it is negligible in communication fibers using present-day

parameters.

(b)

pulse power isFpeax = 20 mMW. This power is somewhat high
for communications purposes but was chosen here to produce
A. NRZ Signals a sizable nonlinear effect in 500 km of fiber. Subsequently,

In our studies of NRZ signals we selected the followin}/® Present the shape of the received pulses as they appear
parameters in addition to those that we listed in the previo@§er square-law detection and filtering with Byjecc = 5
section: the wavelength, = 1.55 m, the effective mode area, GHz “electrical” Bessel filter. This process distorts the pulses
Aeg = 52 pm?, the Kerr coefficientp, = 2.6 x 10720 m2/w, Very slightly as can be seen in Fig. 3(b) which represents the
an FFT with2!° = 1024 grid points, and a total fiber length, Square-law-detected, filtered input pulse. The quantity plotted
L = 500 km. in Fig. 3(b) corresponds to a current so that it can go negative,

A very important point is the choice of a dispersion magp_ut it is here labeled in units of mW for comparison with
Since at zero dispersion the frequency spectrum of the sig#§ optical pulse, since detected current corresponds to optical
broadens uncontrollably [15], it is essential to have sonR®Wer.
dispersion in the system. Using a fixed amount of dispersionAll simulations reported here were run without fiber losses,
is undesirable since it causes linear pulse distortion which, BAPlying that there are also no optical amplifiers in the system
the one hand, is of little theoretical interest and on the othera®d, consequently, no amplifier (ASE) noise.
undesirable in any realistic communication systems. For thisTo compute the behavior of the system, two approaches
reason, we use here a dispersion map consisting of a periotigfe used. The first solved the coupled nonlinear &tinger
sequence of normalD < 0, and anomalouspD > 0, fiber €quation on the short length scale, carrying out a full split-
sections. The period length is 100 km, consisting of 80 kstep calculation after traversing each shést interval. This
sections with normal dispersiol) = —1 ps/(nm km), and of program is extremely slow and requires 1.5 days of running
20 km compensation sections with = 4 ps/(nm-km). Thus, time for the job at hand on a Sun SPARCstation 10. The second
at the end of each period and of course also at the endpspgram utilized the ideas explained in the preceding section
the fiber, the cumulative linear dispersion is zero. The shapad solved the Manakov-PMD equation in two minutes, and
of the cumulative dispersion map is shown in Fig. 2. In aWe ran it both with and without the nonlinear PMD correction.
simulations reported here, the third-order frequency derivatiVdie result of the simulation is shown in Fig. 4(a), which
of A (and of course all derivatives of higher orders) wereepresents the “electrical” output pulses. Both approaches
zero. produced exactly the same output. Moreover, there is no

As the input pulse pattern we used a 16 bit pseudorandatiscernible difference whether the Manakov routine is run with
word in NRZ (nonreturn to zero) format with a 0.2 ns pulser without nonlinear PMD.
width corresponding to a signaling rate of 5 Gbh/s. These The shape of the pulses, shown in Fig. 4(a), is strongly
pulses are generated by passing rectangularly shaped putsssendent on the random number sequence used for computing
through a low-pass Bessel filter @@ = 8.75 GHz width, the random variations of the fiber orientation angie, The
which gives the pulses slightly rounded edges. These opticakershoot seen at the trailing edges of the pulses in Fig. 4(a)
input pulses are shown in Fig. 3(a) in units of mW. The peatan be somewhat larger or smaller. They can even switch sides
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30 . . , is caused by the interaction of the linear PMD with the
fiber nonlinearity. However, this interaction is almost entirely
due to the interaction of the linear PMD with the Manakov
nonlinearity, i.e., the Kerr nonlinearity averaged over the
Poincag sphere, since inclusion of nonlinear PMD leads to
no “observable” effect.

Filtered Elect.
Pulse (mW)

B. Solitons

It is instructive to demonstrate by means of a numerical
example how fiber birefringence affects the soliton solutions
of the CNLS. Averaging over the fiber birefringence, which
i 1 is explicitly incorporated into the Manakov-PMD equation,
manifests itself by the appearance of the factor 8/9 on its left-
- . hand side. The Manakov-PMD equation is exactly equivalent
to the CNLS equation, but the averaged contribution of the
0 A ‘ . spatially varying birefringence, which appears on the left-hand
®) side of the equation, has been explicitly separated from the
fluctuating contributions, which are on the right-hand side. The
30 - - nonlinear contribution on the right-hand side may be neglected
in most cases of practical interest. However, it is apparent
- - that in the limit that the birefringence strength tends to zero,
the right-hand side of the Manakov-PMD equation cannot
L _ be negligible and must contribute an amount appropriate to
change the 8/9-factor to unity. Thus, fiber birefringence has
a noticeable influence on soliton solutions of the Manakov
0 1 2 3 equation where the 8/9-factor appears explicitly in the formula

t (nsec) for the soliton pulse duration which, in soliton units, assumes
© the form

(@)
30 T T T

Filtered Elect.
Pulse (mW)

Filtered Elect.
Pulse (mwW)

Fig. 4. Detected and filtered current of the output pulsedfor, = 100 m 9 1/2
andA,..¢ = 50 m. (a) This figure shows the solution of the CNLS equation T =
and the Manakov-PMD equation both with and without the nonlinear PMD 8(|UJ12 + |V I2) peak
term. All figures look alike. (b) Same as (a) but for a linear fiber with= 0.

(c) Same as (a) but with PMB-= 0. To demonstrate the influence of fiber birefringence, the solid

curve in Fig. 5(a) shows the soliton solution of the Manakov

and appear at the leading edges of the pulses. These differer‘ﬁ%éation’ computed without the negligible correction terms,

correspond physically to the observation that different fibefde the dotted curve represents the soliton solution of

with different random variations of the birefringence wiIIthe CNLS equation for a fiber without birefringence. We

have somewhat different behaviors. Nonetheless, our tJ’v‘B"e confirmed by numerical solutions of the differential
’ aﬁ%lations that both pulses maintain their shape as they travel

along the fiber. Fig. 5(b) shows the soliton solution of the

assumed variation of the fiber birefringence. ; ; ’ . .
To identify the source of the pulse distortion, we “turnCNLS for a fiber with birefringence. Superimposed on this

off” the nonlinearity by settingn, = 0, obtaining Fig. 4(b). curve is the Manakov solution of Fig. 5(a). Both curves are

Since in a linear system the compensated dispersion ma(,?ost indistinguishable. However, the height of the CNLS

prevents dispersion from distorting the pulses, the remaini iton fluctuates along the fiber due to the randomness of the

slight pulse distortion seen in Fig. 4(b) is caused entirely b efringence. The maximum and minimum excursions of the
>INt p o g . : Y Bhiculated pulse heights differ by approximately 1% of the
linear PMD which is not affected by the dispersion map;, . .

. o ' . average pulse height, but Fig. 5(b) demonstrates clearly that
However, not all the distortion in Fig. 4(a) is due to th : L ; .
. . . . . he fiber birefringence does indeed modify the shape of the
interaction of PMD and the fiber nonlinearity, as can be seen. : .
A . . Soliton pulse by the amount predicted by the 8/9-factor in the
in Fig. 4(c), which was computed with the regular valuewef Manakov equation
but with Dpyp = 0. This figure shows that the nonlinearity q '
conspires with dispersion to distort the pulses even though )
the overall cumulative linear dispersion of the system is zers: Nonlinear PMD
The slight asymmetry of the pulses in Fig. 4(c) is attributable Mathematically, the terms that we refer to as nonlinear
to the “electrical” filter which shows this tendency already iPMD corresponds to the difference between the Kerr effect
Fig. 3(b), but which is enhanced by the substantial broadenitegms and their average over the Poigcaphere. Physically
of the spectrum at the end of the fiber. A comparison dhese terms correspond to the rapidly varying fluctuations
Fig. 4(a)—(c) makes it clear that the bulk of the pulse distortian the strength of the Kerr effect as the polarization state

(30)
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. varying birefringence and, in a fixed frame, the electric field
remains correlated over long lengths. This increased mixing
length only affects the nonlinear PMD; the strength of the
linear PMD is proportional td_..... It has been proposed to
significantly decrease the linear PMD by rapidly shifting the
orientation of the birefringence axes in a fiber as it is drawn,
which amounts to reducind...,, while keepingAy..: fixed
0 [11]. This approach raises the specter that nonlinear PMD
@ might become important in these fibers, but that is not the
case. An analytical calculation of the mixing length in this
limit shows that it equals\?_, /(1272 Leore) [11], and the
factor of 1/(12x?) is so small that it is difficult to achieve a
significant mixing length even under extreme circumstances.
To illustrate this point, we carried out simulations with
the same parameter set as in Section IV-A, except that we
changedL ., from 100 to 10 m andAj.,; from 50 m to
0l— L L : 10 km. Obviously, a beat length of 10 km is far larger than
can be presently achieved in practice. Nonetheless, the mixing
length is only 100 km in this case, which while approaching
(b) the nonlinear and dispersive scale lengths is not larger than
Fig. 5. (a) The solid curve is the solution of the Manakov equation, i.¢hem. Even under these fairly extreme conditions, we found
the Manakov-PMD equation without the PMD terms on its right-hand sidgyg significant effect from the nonlinear PMD terms. To observe
v_vhlle t_he dottgd curve is the sollt_on solunpn of the CNLS equation forﬁqe effect of the nonlinear PMD terms. we had to further lower
fiber without birefringence. (b) Soliton solution of the CNLS equation for ’
fiber with birefringence. Superimposed on this curve is the Manakov solutidn..,,, from 10 m to 1 m. In this case, the mixing length equals
of (a). The height of the CNLS soliton fluctuates by about 1% due to thegog km which is larger than the nonlinear and dispersive
randomness of the fiber birefringence. scale lengths. (Note that in this case, we @&t = L., /30
) _ instead ofdz; = Apeat/30.)
changes. The size of these fluctuations does not depend offpe pulse shape computed for these conditions with the
the birefringence strength; they are about the same size as@j@ s as well as with the Manakov-PMD equation, including
Kerr effect itself. However, their duration depends on the rajfe nonlinear correction term, is shown in Fig. 6(a). The
at which the polarization state visits the different points on trf%ures computed with the two programs are indistinguishable.
Poincaé sphere. If this rate is rapid—as is the case in standqf%' 6(b) shows what happens when we neglect the nonlinear
communication fibers with standard signal parameters—thpfyp. The pulse shape in Fig. 6(b) is distinctly different
the fluctuations rapidly change sign and their net effect on thgm that of Fig. 6(a). This example clearly shows that the
signal evolution is nearly zero. nonlinear correction term in (12) does make a contribution
A significan'g gontribution frgm nonlineqr PMD can 0nllyif the inequality Leo.: <€ Apeas i sufficiently well satisfied.
occur when mixing on the Poinaaisphere is poor, i.e., this However, this example represents a highly extreme case that is
mixing occurs on the same length scale or even a longgjikely to be found in practice so that the nonlinear correction

length scale than is associated with the Kerr effect, chromagiGy can safely be neglected for all communications fibers in
dispersion, and polarization mode dispersion. From the studjgag today.

in [10] and [11], one concludes that there are two limits in
which this situation can occur. The first and most obvious is
when L., the fiber correlation length, becomes comparable
to the nonlinear and dispersive scale lengths. Since the mixing-rom a practical standpoint, it is not feasible to integrate
length on the Poincar’sphere must be longer than...., the coupled nonlinear Sabdinger equation on the small
it is apparent that mixing will be poor. This limit, whichlength scale that is required to mimic the rapidly changing
applies to subpicosecond pulses, does not occur in present-diagfringence orientation. In the absence of the approach based
communication systems. In this limit, there is no advantagm the Manakov-PMD equation that we have described here,
to solving the Manakov-PMD equation rather than directlgn ad hoc approach that was first introduced in [8] and [9]
solving the coupled nonlinear S@uinger equation since therehas become widely used. We refer to it here as the coarse-step
is no short length scale any more. method, and we will analyze it using the theoretical tools that
The second limit is a little less obvious. Whdn,,, <« were developed in Section Il. We will show that the coarse-
Abeat, the mixing length becomes proportionald@. .. /Lcorr,  Step method as it is presently used deals with the nonlinear
and when the mixing length approaches the nonlinear aRMD inaccurately but that this inaccuracy does not matter
dispersive scale lengths, mixing will be poor [10], [11]. Inwhen the contribution of the nonlinear PMD is negligible as
this limit, which corresponds to decreasing the magnitude isf the case in present-day communication systems. We will
the birefringence, the birefringence becomes sufficiently smahow that it deals with the linear PMD accurately but to do so
that the polarization state is nearly unaffected by the randonthe magnitude of the birefringence must be artificially lowered.

Pulse Power

Pulse Power

t (soliton units)

V. COMPARISON WITH THE COARSESTEP METHOD
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30 ; ; ' where we have transformed frof to ¥/ = exp(—io32)¥
i and then removed the primes. In the coarse-step method used
Bgzo i J in [8] and [9], one simply solves (33) on a length scale that is
gé somewhat longer than the fiber correlation length—100 m was
o3 10 1 used in [8] and 1 km in [9]—but that is still short compared to
i%—j“:-’ the nonlinear and dispersive scale lendtl8nce the random
variations of the birefringence are no longer present in (33),
0 ' the scattering of the field on the Poineasphere that they
(a) induce must be put back. In both [8] and [9], the authors do
30 that by scattering the field on the Poineaphere at the end
' ' ' of each step, setting’ = SW¥. In [8], the authors used the
E% 20 | | scattering matrix
%‘; S_ <Cosa Sinaexp(id)))
o8 = . p (34)
52 10 | ] — sin cwexp(—ig) COS o
=q
- . . while in [9], the authors used
0 1 2 3 . . .
t (nsec) S— ((rogpUd) smaei) @)

® where cos 2« and ¢ are randomly chosen from uniform
Fig. Gd/\ Detecteldo ggg filteredTChurrint of tf}:e Outphut pullseSIfofrr h= éo distributions in the first case ardand¢ are randomly chosen
T e s o Shows T Soluton of e CNLSfom uniform distributions in the second case. In neither case
shows the solution of the Manakov-PMD equation without nonlinear PMD.does this matrix introduce a uniform scattering on the Poacar”
sphere. To achieve that, one must use, for example, the three
Euler angles [16]. However, concatenating several of these
We will also show how the method can in principle be modifieghatrices together does lead to rapid uniform mixing on the
to deal accurately with nonlinear PMD. Thus our results serincaé sphere, as we will show. This point is significant
to validate the use of the coarse-step method in simulationspefcause the Manakov-PMD equation is obtained by removing
current communications systems. the rapid motion that a linear CW signal undergoes on the
Our starting point is the coupled nonlinear Sitinger Poincaé sphere. In this case, a linear, CW signal is unaffected
equation transformed into the frame of the local axes @f (33) and the transfer matrik just consists of a series of
birefringence. Substituting, given by (5) into (1), we obtain S-matrices multiplied together.
To demonstrate the uniform mixing on the Poireaphere
ow , 0% and to determine the mixing rate, we define the three Stokes
8 03a—t - § el parametersY = ¥ig ¥, Y = ¥l ¥, and Z = $io, ¥
) 1 which characterize the coordinates on the Poiacghere. For
+n2ko [g|‘1’| v+ g(‘I’ o3¥)os ¥ + gN} =0 (31 comparison, we note thaf, Y, andZ correspond respectively
to S1, S,, and =S5 in [11]. (The minus sign appears in the
representation used in [11] f&; is to be consistent with the
definition used in [7] of the Stokes parameters. Here we return
8\11 2T to the definition used in [9] and [13].) For the scattering matrix
/” given in (34), one finds that the Stokes parameters of a linear,
Sat ot? CW signal evolve according to the formula shown in (36) at
+ nako {|q,|2q, _ 5(\1;1“02\1;)02\1;} -0 (32) the bottom of the next page and for (35), this result becomes

which may also be written

Xt cos 20y, sin 2ay, 0
whereN = (¥ ®2 W2®%)t. In the case where the birefrin-| Yn+1 | = | —sin2an cos¢,  cos2a, cosdn  sing,
gence axes are fixed, i.ex, in ¥ equals 0, it was long ago Znt1 sin2ap, sing,  —cos2a, sing,  cos ¢
observed [3], [4] that the terd¥ is rapidly varying and could X,
be dropped from (31) with no loss of accuracy in the parameter x| Y, (37)
regime that is used in communication fibers. Equation (31) i,

then reduces to o _
where the subscript indicates the step number. Noting that

R 3_‘1’ _ L v the cos 2a,, and ¢,, are chosen randomly in each step for the
J /
dz 5o o

5 1in the description of the numerical algorithm in both [8] and [9], it was
+ nako —|‘I’| ¥+ = (\IlTag\Il)ag\Il =0 (33) not explicitly stated thaiN is dropped. We are grateful to Dr. Evangelides
for describing to us the numerical algorithm that was used in [9].
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first case, one finds from (36) that where lettingR; = (z;,¥;,%), R1 = (1,0,0), Ry =
<Xn+12> 1/3 1/3 1/3 <X721> (0, 1,0), and R3 = (0,0, 1) atz = NA.
o) | = (173 172 176 | | (2 38) Noting that (rp2) = —4(det(F)) [13], we substitute (44)
<Z +12> 1/3 1/6 1/2 <ZT§> into (43) and use the results, which may be derived directly

o from (36) and (37), that the; are uncorrelated from step to
where the angular brackets indicate an average over all POSElp to conclude

ble values ofcos 2«,, and ¢,,. We finally conclude

(x2) [ L[ 0 9 (th) = —4(V')*A’N = 4(V')*AZ. (45)

2 — _ —
EEZ/gi 3 1 + %30 _1 + bono _1 (39) By contrast, one finds in the largelimit from [11, eq. (22)]
where 6,0 = 1 if n» = 0 and O otherwise, and the values (1) = 8(V)?Leor: Z. (46)

of a and b depends on the initial conditions. For example, if o ] ) )

Xo=1 Y, =0 andZ, = 0, we finda = 0 andb = 1/3. Thus, the polarization mode dispersion will be too large by a
The convergence to a uniform distribution function is ver{Actor of (A/zLCorr)l/Q' o

rapid. Indeed, if we define the diffusion length as the length However, if one Iower?b/’Q and hence the birefringence,
over which the initial conditions fall to withirL /e of their PY @ factor of (2Lcor/A)™/%, then the polarization mode
uniform value of(1/3,1/3,1/3)t, then we find that this occurs dispersion returns to its original value in a statistical sense.

within two steps, regardless of the initial conditions. A similalf: for example,Lcer, = 30 m andA = 1 km, one must lower
analysis for (37) yields the birefringence by a factor of four. The birefringence is often

not even known within a factor of this magnitude!

2
<Xr21> 1 1 1 2 1 We now consider the nonlinear terms. The first point to note
<Y,§> 3 L)+ “an =1 ) +bbno| =1 ). (40) g thatN, given in (31), does not contribute to the average over
(Z7) 1 -1 0 the Poincag sphere which i€8/9)n2ko|®|?¥ regardless of

The convergence in this case is even more rapid than in thbether the term is kept or dropped. By contrast, the effect
previous case. on the nonlinear PMD is profound. We previously found that
We now determine the polarization mode dispersion e nonlinear contribution involves thg, as can be seen by
the coarse-step method. Focusing on the linear part of (38)ference to (12)—(18). In this case, we find that the nonlinear

ignoring chromatic dispersion, and the Kerr effect, we find contribution to¥ is given by

N

- - oP 5 1

B(z=NAw) = [[(SnS.)¥(x = 0,0) i, +nako %|\11|2\11 +o(Tlew)sw| =0 (47)
n=1 ~

= Snswsnjlswsn—ﬁw where 7, given by (16) involves ther;, rather than thez;.

-+ S81S,¥(z =0,w) (41) We can write out an expression that is analogous to (17) but
there is little point. The basic result is that the nonlinear PMD
is inaccurately described by the coarse-step method. It was
already noted in [11] that the coarse-step method tends to
S., = exp(il/oawA) = <6XP(ibIWA) 0 ) ) exaggerate the strength of the PMD coeﬁicients by g_factor

0 exp(—ib'wA) of about (A/Ly,x) where Ly, is the appropriate mixing
length. Even more serious, however, is that the coefficients
for nonlinear PMD are incorrect in the coarse-step method.
In particular, becausé,ix < Leor: fOr the z; regardless of

where®(z,w) is the Fourier transform o®(z, ), theS,, are
the scattering matrices given by (34) or (35), and

(42)
Taking the derivative of (41) with respect to and writing
P'(z = NA,w=0)=F¥(z = NA,w = 0) we find

N Abeaty while Lmix X AbeatQ/Lcorr for the Zj when Abeat >
F=4b'A Z Vo3V (43) Lo, the coarse-step method will not show the expected
m=1 rise in nonlinear PMD in this limit. However, the poor
where V,, = Hﬁ;m(snsw) — SNS.Sy_1S.Sy_, [reatment of nonlinear PMD in the coarse-step method has

S.---S,,S.. Physically, the matrix/! corresponds to the little practical significance for simulations of communications
backward transformation from — NA to » — mA By fibers to date in which both the actual nonlinear PMD and the
analogy with (16), we write ' nonlinear PMD generated by the coarse-step method are both

) negligible.
VyosVi = < L1,m L2,m — 'La?g,m> (44) Our results suggest a modest improvement in the coarse-step
T2,m + 1T3,m —T1,m method. One could use an Euler angle transformation at the
X1 cos 2qy, sin 2a, oS ¢y, —sin 2a, sin ¢y, X,
Y411 | = | —sin2a, cos¢,, cos®a,, — sin? ¢, cos 26, sin? v, sin 2¢, x| Y, (36)

Zint1 sin 2a, sin ¢, sin? a,, sin 2¢,, cos? a,, + sin? o, cos 2¢n Zn
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