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Repolarization of Polarization-Scrambled Optical
Signals Due to Polarization Dependent Loss

C. R. Menyuk,Senior Member, IEEE,D. Wang, and A. N. Pilipetskii

Abstract—We calculate the distribution function of the de-
gree of polarization of an initially polarization scrambled signal
propagating long distances in an optical fiber. We show that a
significant repolarization can occur for modern-day parameters.
We estimate how far the polarization dependent loss must be
reduced before repolarization becomes negligible.

Index Terms—Birefringence, Fokker–Planck equations, opti-
cal fiber amplifiers, optical fiber communication, polarization,
stochastic differential equations.

I. INTRODUCTION

T HE COMBINATION of polarization dependent loss, po-
larization dependent gain, and polarization mode disper-

sion can lead to fading, which degrades the performance of
high-data-rate long-distance communication systems [1]–[5].
Polarization dependent gain impacts the performance by caus-
ing excess noise in the polarization state orthogonal to the
signals. Polarization mode dispersion in combination with po-
larization dependent gain leads to amplitude crosstalk between
channels in a wavelength-division multiplexed system. Both
polarization dependent gain and polarization mode dispersion
tend to depolarize a signal and will in principle pose little or no
difficulty if the input signal is depolarized. Therefore, recent
experiments have used polarization scrambling in which all
the Stokes parameters average to zero on a time scale that is
short compared to the response time of the erbium-doped fiber
amplifiers [6], [7], e.g., a single bit. By contrast, polarization
dependent loss tends to repolarize a signal. Thus, not only does
polarization dependent loss directly degrade a communication
signal, but, by repolarizing an initially polarization-scrambled
signal, it can seed further degradations due to polarization
dependent gain and polarization mode dispersion.

In this letter, we will consider the simple case of a single
channel in which polarization dependent loss elements located
at amplifiers alternate with lengths of optical fiber, as shown
schematically in Fig. 1. We will derive an analytical formula
for the probability distribution function of the degree-of-
polarization and compare the formula to Monte Carlo simula-
tions. We will show that if each amplifier has a polarization
dependent loss of 0.1 dB, which is a typical value
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Fig. 1. Schematic illustration of the model configuration.

for current systems [5], [8], then a significant amount of
repolarization will occur. We will then discuss the scaling
of the repolarization with and the implications for
communication systems. The model that we will use follows
the Stokes parameters of the channel and does not take
into acount dispersion and nonlinearity. Since polarization
dependent loss affects the whole signal uniformly, we do not
believe that the impact of this simplification is large. Also,
we do not include the polarization dependent gain and the
polarization mode dispersion since the goal of this letter is to
calculate the repolarization due to polarization dependent loss
and show that it can be significant, rather than attempting to
calculate the overall penalty due to all polarization effects at
once.

II. THEORY

The effect of a polarization dependent loss element is to
cause excess loss in one of two orthogonal polarizations. Using
the Jones vector notation where we take the seconf component
to be in the direction of maximum loss, we may write

(1)

The quantities and are the complex field amplitudes,
and is related to through the relationship, (in
dB)

Since we are interested in the repolarization of an entire
communication channel, we will be focusing on the evolution
of the Stokes parameters

(2)
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where we are assuming that is very large compared to a
single bit period and that the channel becomes statistically
stationary when is large so that this definition is meaningful.
From (1) and (2), we find

(3)

The effect of the fiber between the polarization dependent
loss elements is to randomly rotate the Stokes vector

on the Poincaŕe sphere. We thus obtain the
following iterative equations,

(4a)

(4b)

(4c)

where

(5)

The are independent and identically distributed (i.i.d.)
random variables, uniformly distributed in the range [1, 1]
so that 1/3. Similarly, the are i.i.d. random
variables that are also independent of the and are
uniformly distributed in the range [0, 2]. Equations (4) and
(5) together constitute a random process, and our goal is to
solve them simultaneously in order to determine the

probability distribution function for
Equations (4) and (5) do not take into account polariza-

tion independent loss and gain. In reality, the amplifiers in
optical fiber telecommunication systems are set to operate in
saturation so that the total power is maintained as close
to constant as possible [9]. Since is not affected by the
addition of polarization independent loss and gain, we do not
include it, but the reader should be aware that and

are not separately meaningful. Only the ratio

is meaningful. Since is not affected by the total power

level, we will simply set 1. We also set 0,

which is equivalent to assuming 0, so that the channel
is initially polarization scrambled.

To make further theoretical progress, we next eliminate
and from (4) and (5), obtaining

(6)

This relation suggests replacing and with the new

variables and , which now
obey the equations

(7a)

(7b)

where Combining (7a) and (7b) yields

(8)

Since is close to one, the change in each step is small,
and it is reasonable to replace (8) by the stochastic differential
equation

(9)

where is the first-order stochastic differential
operator, is a white noise process with variance

, and [10].1 Since (8) is
a forward difference equation, (9) must be interpreted in the
sense of Ito [10],2 which implies that (9) represents a diffusion
process, and the evolution of the distribution function of,

, is governed by the Fokker–Planck equation

(10)

Changing variables from to , where , one finds
that is governed
by the Fokker–Planck equation

(11)

where In the limit of interest to us in which
1, one may replace , in which case (11)

has the solution

(12)

with From (12), one may obtain
using the relationship

(13)

Fig. 2 compares the analytical expression for from
(12) and (13) to a Monte Carlo solution of (4) and (5),
setting 0.1. We used 10 representations of the

. Two points are apparent. The first is that the theory is
indistinguishable from the simulation. The second is that when

300, corresponding to transoceanic distances, a significant
amount of repolarization occurs.

1In [10], (4.1.1) and the surrounding discussion define Ito stochastic
differential equations. Equation (10.3.1) and the subsequent discussion show
that forward difference equations like (8) should be approximated by sto-
chastic differential equations interpreted in the sense of Ito (as opposed to
Stratonovich).

2Diffusion processes are defined and the Fokker–Planck equation is derived
in [10, Secs. 2.5, 2.6, ch. 9].
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Fig. 2. Comparison of the distribution functionf(dpol) obtained by Monte
Carlo simulation of the original difference equations [(4) and (5)] to the
theoretically calculated function [(12) and (13)]. The parameters arexPDL =
0.1. (a)n = 100. (b)n = 300. The two approaches yield indistinguishable
results.

III. D ISCUSSION

A thorough discussion of the impact that the repolarization
has on long-distance, high-data rate systems must await the de-
velopment of a more complete model that includes polarization
dependent gain and polarization mode dispersion. Nonetheless,
it is possible to immediately draw from this work a number
of simple results that are useful for system design. First,
polarization dependent loss can lead to a significant repolar-
ization of a polarization scrambled signal. This repolarization
can then seed further signal degradation due to polarization
dependent gain and polarization mode dispersion; so, there is
a clear motivation to reduce as much as possible. From
(12), using we find and

, where is the point at which
attains its maximum, and is the mean of .

For the example presented in Fig. 2(b), in which 300 and
0.1, we find that 0.16 and 0.19.

How low must we make before it can be neglected
entirely? We may estimate this value very roughly as follows:
After polarization scrambling, the residual is about 15%
[8]; so, it is reasonable to assume that if the additional
repolarization is under 15%, then it can be neglected. If we
assume that a fiber cable has a lifetime of 20 years and,

somewhat conservatively, that it changes its polarization state
every hour so that a different value of is sampled, then
the cable passes through 210 states in its lifetime. Thus,
if the probability of obtaining a repolarization of 0.15 is less
than , then repolarization can be ignored. Integrating
(12), we find that with probability 5
10 so, with 300, our criterion becomes 0.025
which is about a quarter of the current best value. While this
sort of reduction of may be difficult to obtain, it seems
worth striving for.
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