Impact of Nonlinearity Including Bleaching in $p-i-n$ Photodetectors on RF-Modulated Electro-Optic Frequency Combs

Seyed Ehsan Jamali Mahabadi, Student Member, IEEE, Thomas F. Carruthers, Senior Member, IEEE, Curtis R. Menyuk, Fellow, IEEE, Jason D. McKinney, Senior Member, IEEE, and Keith J. Williams, Senior Member, IEEE

Abstract—We use a drift-diffusion model that includes the effect of bleaching to study the impact of nonlinear distortion in a $p-i-n$ photodetector (PD) on RF-modulated frequency combs. This work complements a similar study that we carried out for a modified uni-traveling carrier (MUTC) PD. We begin by using experimental responsibility data to develop an empirical model of the bleaching in a $p-i-n$ PD when operating in pulsed mode. We then incorporate this model of bleaching into a drift-diffusion model. Next, we use this drift-diffusion model to determine the impact of nonlinearity on the second- and third-order intermodulation distortion products IMD2, and IMD3, as a function of the comb line number n. We then determine the corresponding output intercept points OIP2, and OIP3, and distortion-to-signal ratios P_{2n}, and P_{3n}. In contrast to MUTC devices, we find that bleaching increases P_{2n}, and P_{3n}, at all comb line numbers. However, these distortion products change little as n increases, in contrast to MUTC devices where they grow rapidly as n increases.

Index Terms—Photodetector, nonlinearity, frequency combs.

I. INTRODUCTION

Optical links are an appealing choice for a variety of radio frequency (RF) applications [1]–[2]. Applications include antenna remoting [3], radio-over-fiber [4], beamforming in phased-array radars [5], and optical signal processing of microwave signals [6]. These applications push link lengths towards 100 km or more. For link lengths in this range, stimulated Brillouin scattering [7] (SBS) severely limits the optical launch power, which necessitates the inclusion of either midspan or post-link optical amplification [8]. In many cases (e.g., antenna remoting), midspan amplification is not an option; the use of an amplifier prior to the photodetector drives the link noise figure substantially above the shot-noise limit [8]. Optical links also have some limitations such as less efficiency, higher noise figure, lower spur-free dynamic range (SFDR), and lower RF power in comparison to purely electronic systems [9].

While any single CW optical signal is limited to powers below the threshold for SBS, additional signals outside the gain bandwidth may be launched into the fiber without penalty. Hence, broadband digital signals are less susceptible to the effects of SBS than are narrowband signals. As each comb line experiences the same RF modulation, the optical comb effectively behaves as an N-element array in the absence of chromatic dispersion as long as the signals are within the detector bandwidth. The RF signals that are recovered from the heterodyne beat of each comb line with its sidebands are coherently summed by the photodetector. Therefore, the comb-based link has the same RF performance as a conventional analog link operating at the same average photocurrent (optical power) level. The important concept here is that the power in each comb line is now limited by the SBS threshold power. Hence, an optical comb with N comb lines can transmit on the order of N times more average power through the link than is possible in a CW laser-based analog link. This approach reduces the dependence on amplification prior to the photodetector in single-span links and may eventually obviate the need for them [8]. This approach has been demonstrated experimentally by McKinney et al. [8].

Bleaching or absorption saturation in a high-current photodetector can occur when intense optical fields deplete the number of available final energy states or depopulate the initial states [10]. Additionally, the high density of electrons that is created can increase the possibility that they are recaptured. Regardless of its origin, bleaching leads to a reduction in the photodetector’s responsivity as the peak intensity and hence the average power increases. This reduction in responsivity can lead to nonlinear distortion of an incoming RF-photonic signal. Juodawlkis et al. [11] have reported that this effect can limit the performance of photonic analog-to-digital converters (PADCs).

Bleaching is an important issue in RF-photonic systems that use frequency combs. Examples include systems that use frequency combs to generate low-noise microwave signals [12] and systems that use frequency combs to disambiguate radar signals [13]. Frequency combs in the RF-domain are generated by using a train of short, high-peak-power optical pulses that...
are converted into a comb in the RF-domain by a photodetector. The pulses in a typical optical pulse train have durations less than 500 fs, and are separated by 10–50 ns, corresponding to a repetition rate of 20 MHz to 100 MHz. Hence, the peak power is larger than the average power by a factor of 10^3–10^5.

We calculate the impact of nonlinearity in a p-i-n photodetector (PD) on a frequency comb that is generated by a pulsed optical input. We calculate the impact both with and without bleaching in order to determine the impact of bleaching. The optical input is a train of short optical pulses with a duration of 100 fs and a repetition frequency of $f_r = 50$ MHz that is modulated at microwave frequencies. The PD produces a train of electrical pulses that correspond to a frequency comb in the frequency domain with components at multiples of the repetition frequency. Each comb line is surrounded by components that are separated by the modulation frequencies, as well as intermodulation distortion products that are unwanted in applications [14]–[18].

In previous work, we used experimental data to develop an empirical model of bleaching for both p-i-n and MUTC PDs [14], [15], [18] that we incorporated into the drift-diffusion equations [19]–[21]. In [15], we solved the drift-diffusion equations to determine the impact of nonlinearity in an MUTC PD on a frequency comb. We compared the device nonlinearity both with and without bleaching. The impact of nonlinearity is different for different comb lines. It is standard to characterize the nonlinearity using the second- and third-order intermodulation distortion products, IMD2 and IMD3, as well as the second- and third-order output intercept points, OIP2 and OIP3 [22], [23]. In [15], we defined a separate IDM2$_n$, IDM3$_n$, OIP2$_n$, and OIP3$_n$ for each comb line n, and we used them to characterize the nonlinearity in the MUTC PD. We found that the impact of bleaching on the nonlinearity is complex. The principal effect of bleaching is to lower the responsivity, which also decreases the space charge and lowers the nonlinearity that it induces. This effect is particularly pronounced at comb line numbers n that correspond to large frequencies. The OIP2$_n$ and OIP3$_n$ are always lower with bleaching, but the signal-to-noise ratios $\rho_{2n} = \text{IMD2}_n/S_n$ and $\rho_{3n} = \text{IMD3}_n/S_n$, where S_n is the signal in the n-th comb line, are almost equal at large n. We attribute this result to the reduced space charge when bleaching is present [15].

In this paper, we extend the results to a p-i-n PD with a simple internal structure [19]. As before, we calculate the IDM2$_n$, IDM3$_n$, OIP2$_n$, and OIP3$_n$ for each comb line both with and without bleaching. As was the case for the MUTC PD [15], the OIP2$_n$ and OIP3$_n$ are always lower with bleaching than without. By contrast, the signal-to-noise ratios ρ_{2n} and ρ_{3n} are larger with bleaching than without bleaching for all n, although they converge for large n. Somewhat surprisingly, the nonlinearity is lower for the p-i-n PD than for the MUTC PD at large n. This result differs from our earlier results with the p-i-n and MUTC PDs that operate with a modulated continuous wave (CW) input rather than modulated pulses [19], [21]. We discuss this difference in Sec. 5 of this paper, summarizing an earlier discussion in [14].

The remainder of this paper is organized as follows: In Section II, we review the p-i-n PD structure. In Section III, we briefly review our bleaching model. In Section IV, we describe the nonlinearity characterization. In Section V, we present our results. Section VI contains the conclusions.

II. p-i-n Structure

The p-i-n PD structure [24] that we use here is a single heterojunction device made from InP and InGaAs, as shown in Fig. 1. The device is composed of a highly doped transparent n-InP substrate of length $w_n = 0.1 \mu m$ ($N_D = 2 \times 10^{17} \text{cm}^{-3}$), an intrinsic layer of n-InGaAs of length $w_i = 0.75 \mu m$ ($N_B = 5 \times 10^{15} \text{cm}^{-3}$), and a degenerately doped p-InGaAs p-region of length $w_p = 1.2 \mu m$ ($N_A = 7 \times 10^{18} \text{cm}^{-3}$), where N_A and N_D denote the acceptor and donor densities, and N_B denotes the unintentional donor density in the intrinsic region. The total length of the PD is $L = 2.05 \mu m$. The incident light is assumed to pass through an aperture on the n-side ohmic contact of the device. In the simulation, we set $N_D = 2 \times 10^{17} \text{cm}^{-3}$, $N_A = 7 \times 10^{18} \text{cm}^{-3}$, and $N_B = 5 \times 10^{15} \text{cm}^{-3}$. We modified the length of the intrinsic region from 0.95 μm in the p-i-n structure in [24] to 0.75 μm in order to match the responsivity of the structure in our simulations with experimental data that was collected at the Naval Research Laboratory (NRL). This modification leads to a higher 3-dB bandwidth (29 GHz with 5-V bias) in the modified p-i-n structure than was the case in prior work [24], [25].

III. Bleaching Model

We have developed an empirical model of bleaching, and we incorporated this model into the one-dimensional (1-D) drift-diffusion equations to calculate the responsivity as a function of average input optical power. We modified a model that we previously used [20] to include the effect of bleaching. The details of the model are described in our previous work [15].

The optical generation rate that we use in our drift-diffusion model G_{opt} is given by

\[
G_{\text{opt}} = B_f G_c \exp \left(-\alpha (L-x)\right),
\]

where B_f is the bleaching factor, G_c is the generation coefficient without bleaching, α is the absorption coefficient, x is the distance across the device, and L is the device length. This model effectively assumes that the bleaching is instantaneous. That will not be the case in practice, but the finite response time will not affect the model as long as the time for the PD to return to the unbleached state is short compared to the repetition time.

Fig. 2 shows experimental and simulation results of the responsivity of the p-i-n PD as a function of the average input power.
optical power with a pulsed input in which pulses have a FWHM duration of 100 fs and a repetition frequency of 50 MHz. The experimental data that we show in Fig. 2 were collected at NRL. In the experiments, a Calmar Mendecino passively-modelocked erbium-doped fiber laser was used. The output of the mode-locked laser was a train of pulses with a 100-fs FWHM pulse duration and a 50-MHz repetition rate. The output was passed through a variable attenuator and a calibrated optical tap with a 90/10 splitter. The 10% tap was used as a power monitor and the 90% tap illuminated the p-i-n PD. The average optical power and average photocurrent were measured as the optical attenuator was adjusted. Knowing the repetition rate, the optical power was then converted to a pulse energy in order to calculate the responsivity [15].

IV. NONLINEARITY CHARACTERIZATION

PD nonlinearity can be measured using one-, two-, and three-tone measurement systems [26]. In our previous work [15] we described the three-tone measurement setup that we are modeling in this study. To model this setup we use

\[
P(t) = P_{\text{opt}}(t)
\]

\[
\{1 + m_n \sin(2\pi f_1 t) + \sin(2\pi f_2 t) + \sin(2\pi f_3 t)\},
\]

where \(P(t)\) is the modulated input optical power, \(m_n\) is modulation depth, \(f_1, f_2, f_3\) are the three modulation frequencies, and \(P_{\text{opt}}(t)\) is the input light power of the optical envelope as a function of time. It is given by

\[
P_{\text{opt}}(t) = \sum_{n} A \sech \left(\frac{t - nT_r}{\tau} \right),
\]

where \(A\) is the amplitude of input optical power, \(T_r\) is the repetition time and \(\tau\) is the pulse duration. The periodic train of optical pulses corresponds to equally spaced comb lines in the frequency domain that are spaced by the repetition frequency and centered around zero [27]. The output of the PD is a periodic train of electrical pulses that corresponds to comb lines in the frequency domain that are again separated by the repetition frequency. We modulate the input optical pulses with three different frequencies. In our calculations, we used \(f_1 = 10\) MHz, \(f_2 = 10.5\) MHz, and \(f_3 = 9\) MHz. We chose these three frequencies to be close to each other and to fall inside the 50-MHz repetition frequency.

We use a total time window that is 2-\(\mu s\) long and contains an integral number of periods for all three modulation frequencies, so that we avoid aliasing.

We calculate the impact of bleaching on the device nonlinearity as a function of the average input optical power. Second-order intermodulation distortion (IMD2) products and third-order intermodulation distortion (IMD3) products are particularly significant when considering nonlinearity in PDs. The third-order intermodulation products are particularly important because these products can introduce spurious signals that cannot be filtered out from the fundamental response. This is important for microwave photonic (MWP) applications where these would appear as false signals of interest [14]. OIP2 and OIP3 are the key figures of merit to characterize IMD2 and IMD3 [22]. OIP2 and OIP3 are defined as the extrapolated intercept points of the power of the fundamental frequency and the IMD2 and IMD3 powers, respectively. Hence, they characterize the power ratio of the intermodulation products and the fundamental signal. There are second-order intermodulation terms at the frequencies \(f_1 \pm f_2, f_1 \pm f_3,\) and \(f_2 \pm f_3\), and third-order intermodulation terms at the frequencies \(f_1 + f_2 \pm f_3, f_1 - f_2 \pm f_3,\) and \(f_1 + f_2 \pm f_3\), where \(f_1, f_2, f_3\) are the modulation frequencies [14].

When studying frequency combs, it is necessary to redefine IMD2, IMD3, OIP2, and OIP3 in a fundamental way. When working in CW mode there is one IMD2, IMD3, OIP2, and OIP3, but when working in pulsed mode, we must determine these quantities for each comb line and IMD2, IMD3, OIP2, and OIP3 become function of comb line number \(n\) [14], [15]. We focused on the IMD2, \(n\) products at \(nf_r + f_1 \pm f_2\) and the IMD3, \(n\) products at \(nf_r + (f_1 - f_2 + f_3)\). These are the frequency combinations closest to the fundamental frequencies. We calculate one IMD2, and one IMD3, and from that one OIP2, and one OIP3, for each comb line \(n\). We calculate the IMD2, IMD3, OIP2, and OIP3 for a single comb line \(n\) as a function of comb line frequency \(f = nf_r\) where \(f_r\) is the repetition frequency of the input optical power (50 MHz) as a function of comb line frequency.

Fig. 3 schematically illustrates the photodetection of a periodic train of three-tone modulated optical pulses, which then produces a train of modulated electrical pulses where \(P_{\text{opt}}(f)\) is the Fourier transform of \(P_{\text{opt}}(t)\) and \(S(f)\) is the photocurrent spectral density.

V. SIMULATION RESULTS

We calculate the nonlinearity as a function of the average input optical power \(P_{\text{opt}}(t)\), given in Eq. 2. For pulsed inputs, we first calculate the impulse response of the PD for different input optical pulse energies, and we then combine the electrical pulse in the time domain, given by 3, taking into account the gap of 20 ns between the pulses, to obtain the total electrical response \(P_e(t)\) over a time window of 2 \(\mu s\) [15]. We next calculate the Fourier transform of \(P_e(t)\) in order to determine the harmonic powers of the photocurrent for different choices of the amplitude \(A\). Using this approach, along with Eq. 1, we calculate the nonlinear distortion of a pulsed input both with and without bleaching. The principal effect of bleaching is to lower the responsivity of the PD so that fewer electrons are produced.
Fig. 3. Time and frequency domain depictions of a modulated optical and photodetected electrical pulse trains, where T_r is the repetition time and τ is the pulse duration of the optical signal. (a) Modulated optical pulse train intensity profile. (b) Modulated photodetected electrical pulse train. (c) Spectrum of the modulated optical intensity profile. (d) Power spectrum of the modulated photocurrent. Adapted with permission from [14] © The Optical Society of America.

That lowers the power at the fundamental frequencies S_n, but also decreases the space charge and hence the nonlinearity, particularly at high frequencies.

Fig. 4 compares OIP$_{2n}$ and OIP$_{3n}$ for the p-i-n PD with modulation depths $m = 4\%$ and $m = 8\%$ when bleaching is included. As can be seen in Fig. 4, OIP$_{2n}$ and OIP$_{3n}$ are almost identical for modulation depths $m = 4\%$ and $m = 8\%$. Changing the modulation depth allows us to validate the assumption that we can expand second- and third-order intermodulation distortion powers quadratically and cubically, respectively. We find that this assumption is valid at least up to modulation depth $m = 8\%$, which is also what we found for MUTC PD [15]. All further results will be given for modulation depth $m = 4\%$ since all other results scale appropriately. IMD$_2$ powers scale by the square of the modulation depth and IMD$_3$ powers scale by the cube of the modulation depth up to $m = 8\%$. As a result OIP$_2$ and OIP$_3$ scale linearly/quadratically.

Fig. 5 shows the OIP$_{2n}$ and OIP$_{3n}$ as a function of frequency at 25 mW average input optical power with and without bleaching for the p-i-n PD. Fig. 5(a) shows the intercept point between the IMD$_{2n}$ power and the fundamental power S_n, while Fig. 5(b) shows the intercept point between the IMD$_{3n}$ power and the fundamental power S_n. As is the case for the MUTC PDs [15], these intercept points occur at a lower power when bleaching is included than when it is not. The gap is larger for low comb line numbers. The intercept point decreases both with and without bleaching when n increases, but this decrease is noticeably slower when bleaching is included so that the gap is smaller when n is large. By comparing output intercept points in the p-i-n and MUTC PDs when bleaching is included, we found that the OIP$_{2n}$ and OIP$_{3n}$ for the p-i-n PD have fallen by ~ 5 dB at 28 GHz, while the OIP$_{2n}$ and OIP$_{3n}$ for MUTC PD have fallen by more than 20 dB at 18 GHz [14]. This difference is mostly due to the difference in the IMD$_{2n}$ and IMD$_{3n}$ powers as a function of frequency. The IMD$_{2n}$ and IMD$_{3n}$ powers both steadily decrease as the frequency increases for the p-i-n PD. By contrast, the IMD$_{2n}$ power increases for the MUTC PD up to 10 GHz before starting to decrease, while the IMD$_{3n}$ power steadily increases over the entire frequency range [14]. As we discussed in [14], this difference cannot be attributed to the difference in bandwidths between the two devices and is due to the difference in the structures. Fig. 6 shows the separate contribution of the electron current, and hole current, as well as the total current as a function
of comb line frequency to OIP$_{2n}$ and OIP$_{3n}$. The displacement current is more than 40 dB lower than the other currents, and we do not show it. Figs. 6(a) and 6(c) show that the electron current contributes almost 10 dBm less than the hole current to OIP$_{2n}$ and OIP$_{3n}$ when bleaching is included. Without bleaching, we find that at comb line frequencies below 2 GHz and beyond 20 GHz, the electron current contributes $\lesssim 5$ dBm more than the hole current, while at comb line frequencies between 2 GHz and 20 GHz the hole current contributes $\lesssim 5$ dBm more than the electron current. These results are consistent with Fig. 3(a) in Ref. [28], in which it is shown that the displacement current does not make a significant contribution to the total current, and electron and hole currents are the major current components. We also observe that bleaching lowers the electron current more than the hole current, so that the hole current is consistently larger than the electron current.

Fig. 7 shows the fundamental power S_n, the IMD$_{2n}$ power, and the IMD$_{3n}$ power for $n = 10$ ($nf_r = 0.5$ GHz) and $n = 500$ ($nf_r = 25$ GHz). In Fig. 7, the dotted curves show the harmonic powers when bleaching is not included and solid curves show the harmonic powers when bleaching is included. Bleaching lowers the fundamental harmonic powers because the responsivity decreases. As shown in Fig. 2, this effect becomes more pronounced as the input optical power increases. For lower
frequency comb lines, \(n \lesssim 100 \), we find that the IMD2\(_n\) and IMD3\(_n\) powers are higher when bleaching is included, but for higher frequency comb lines the IMD2\(_n\) and IMD3\(_n\) powers are higher when bleaching is not included. When bleaching is included, the frequency domain impulse response falls off less sharply than when it is not included, which we attribute to the reduced space charge. Thus, the impact of bleaching decreases as the comb line frequency increases. We observed a similar effect in the MUTC PD [15].

Fig. 8 shows the distortion-to-signal ratios \(\rho_{2n} \) and \(\rho_{3n} \) as a function of comb line frequency and number for the \(p-i-n \) PD. (a) \(\rho_{2n} \). (b) \(\rho_{3n} \).

VI. CONCLUSION

We developed an empirical model of bleaching based on experimental data that were collected at the Naval Research Laboratory (NRL), and we incorporated this model into the 1-D drift-diffusion equations to calculate the responsivity. We determined the parameters of the bleaching model in the pulsed mode for the \(p-i-n \) PD. We included the bleaching in our drift-diffusion model to study nonlinearity in \(p-i-n \) PD in the pulsed mode.

We calculated the impact of bleaching on device nonlinearity as a function of the average optical power. We modeled the three-tone modulation technique to calculate the IMD2 and IMD3 powers in the pulsed mode. We calculated OIP2, and OIP3 to characterize IMD2 and IMD3 and determined the effect of bleaching on the nonlinearity of the \(p-i-n \) PD as a function of the average optical power.
of average input optical power. The output of modulated optical pulse trains in the PD is a set of frequency comb lines in the frequency domain. By contrast with a CW input, for which there is one IMD2 and one IMD3, each comb line has its own IMD2 and IMD3. We determined the behavior of IMD2 and IMD3, OIP2 and OIP3, for each comb line with and without bleaching. We found that in the p-i-n PD, OIP2 and OIP3 are at a lower power when bleaching is included than when it is not. The difference between the intercepts with and without bleaching is larger for low comb line frequencies. It decreases at high comb line frequencies, and it almost vanishes beyond 25 GHz. OIP2 and OIP3 decrease both with and without bleaching when n increases, but this decrease is noticeably slower when bleaching is included. We determined the contribution of electron current, hole current, and displacement current to OIP2 and OIP3 in the p-i-n PD. When bleaching is included, we found that displacement current does not make a significant contribution to OIP2 and OIP3, and the electron current contributes almost 10 dBm less than the hole current.

We calculated the distortion-to-signal ratios \(\rho_{2n} = \text{IMD}_2 / S_n \) and \(\rho_{3n} = \text{IMD}_3 / S_n \) as a function of comb line frequency with and without bleaching. The impact of bleaching on the ratios \(\rho_{2n} \) and \(\rho_{3n} \) is complex. Its principal effect is to lower the responsivity, which also lowers the space charge. We found that \(\rho_{2n} \) and \(\rho_{3n} \) increase without bleaching but are almost flat with bleaching. The impact of bleaching diminishes with increasing comb line frequency and almost disappears beyond 25 GHz. The flatness of \(\rho_{2n} \) and \(\rho_{3n} \) in the p-i-n PD contrast sharply with what we previously found in the UMBC High Performance Computing Facility (https://hpcf.umbc.edu).

ACKNOWLEDGMENT

A portion of our computational work was carried out at the UMBC High Performance Computing Facility (https://hpcf.umbc.edu).

REFERENCES

